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Abstract—Vehicle-to-Everything (V2X) communications allows
new and exciting relevant Intelligent Transportation Systems
(ITS) applications such as cooperative perception. In some
vehicular use-cases, infrastructure can have a crucial role in
safeguarding safety, e.g. in an intersection in which inflowing
vehicles do not have Line-of-Sight (blind corner) and an
emergency braking action is required. Performance evaluation
of vehicular communications systems (end-to-end delay, packet
loss ratio, etc.) often resorts to static wireless testbeds, but
there tends to be little consideration about the other subsystems
involved in the time-sensitive goal, namely sensors, processing
and decision-making, and vehicle actuators. In this paper we
present a laboratorial testbed in which ETSI ITS/IEEE 802.11p-
based On-Board and Road-Side Units (OBU/RSU) are deployed
on a 1/10-scale autonomous robotic vehicle and on the road-side
respectively, the latter being part of a road-side infrastructure
that includes a camera and an edge processing node. We target
a use-case of collision avoidance supported by the network,
in which the infrastructure detects an impending collision and
issues a DEN message to prevent it. We aim to take a step
beyond the traditional end-to-end delay characterization that is
limited to the communication subsystem, by proposing a tool
that enables realistic characterization of the entire end-to-end
(detection-to-action) delay in safety-critical use-cases. Results
show that the end-to-end latency of the system (camera-edge
processing node-RSU-OBU-vehicle actuators) is under 100ms.

Index Terms—Vehicle safety, ETSI ITS, DENM, Testbed

I. INTRODUCTION

According to [1], 92.7% of new vehicles available in the
US have at least one Advanced Driver Assistance Systems
(ADAS) feature available. Yet, such systems are not perfect
and may fail in complex scenarios, such as intersections or
adverse weather conditions [2]. In [3], Lane Keep Assist
performed well in a closed course with well-defined lane
markings, while Emergency Brake with a simulated disabled
vehicle contact made in 66% of tests. V2X communications
may complement in-car systems to enable a variety of relevant
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ITS applications, most notably to expand the situational aware-
ness of the vehicle through cooperative perception. The ETSI
ITS stack [4] defines a suite of services oriented for vehicular
scenarios with emphasis on safety-related applications, such as
Cooperative Awareness (CA) and Decentralized Environmen-
tal Notification (DEN). The U.S. counterpart DSRC/WAVE
defines similar services (e.g., Basic Safety Messages – BSM),
and both regional stacks rely on the IEEE 802.11p standard
as access technology (refered to as ITS-G5 [5] in the ETSI
ITS stack). Infrastructure can play a major role in enabling
cooperative perception. In circumstances such as intersections
with blind corner, i.e., approaching vehicle do not have
Line-of-Sight (LoS) to other inflow roads, the vehicles’
sensors range becomes limited and ad hoc communication
performs poorly due to shadowing. Infrastructure can alleviate
this problem; judicious placement of radios and sensors may
enable such a collision avoidance application.

In this paper we propose a scale testbed equipped with
ETSI ITS-capable devices that allows to prototype and de-
velop network-supported vehicular applications. The goal is
to enable realistic characterization of the entire end-to-end
(detection-to-action) delay for safety-critical use-cases in labo-
ratory conditions. Previous works relied heavily on simulation
[6], [7], and V2X wireless testbeds that are static or limited
to the communications system [8], [9]. In [8], a Mobile
Edge Computing (MEC)-enabled collision avoidance service is
proposed. The authors implemented and validated the service
using OBUs with OpenC2X, but provide no latency evaluation.
A Vehicle-to-Infrastructure (V2I) testbed for cybersecurity
testing is presented in [9]. The evaluation of the impact of
the network performance on the timeliness of the intended
physical action/reaction is less explored. An hybrid solution
has been the hardware-in-the-loop approach [10], in which
actual communications hardware is connected to a vehicular
simulator so that there can be a manifestation of the network
performance on the vehicle behaviour. Some works have car-
ried out extensive experimental characterization using full size
vehicles [11], but involved cost and logistics make such works
rare. The current work proposes a middle ground between a
simulation-based evaluation and full-size implementation. Pre-
vious work has showcased the benefits of this approach [12],
that we now extend to have a road-side infrastructure.

We propose a testbed composed of a 1/10-scale autonomous



robotic vehicles, inspired by the F1Tenth competition [13],
equipped with a ETSI ITS/IEEE 802.11p-based On-Board Unit
(OBU), and a road-side infrastructure that includes a Road-
Side Unit (RSU), a camera and a computing node to carry out
object detection. We focus on a use-case of collision avoid-
ance/emergency braking triggered by the infrastructure, as the
road-side camera detects a potential collision and send an ETSI
ITS DEN message, causing the vehicle to come to an halt. This
testbed can be seen in the link: https://youtu.be/psUvqg3xltA.
The contributions of this work are:

• Integration of an ITS V2X wireless platform with the
control logic of a 1/10-scale robotic vehicle;

• Development of a road-side infrastructure capable of
object detection and integration with V2X platform;

• Characterization of end-to-end temporal performance of
the hazard detection and communication system.

The remainder of this document is as follows. The use-
case and application of the ETSI ITS stack are described in
Section II. Section III presents the V2X-enabled scaled robotic
and road-side testbed. Results on end-to-end communications
latency and braking distance are shown in Section IV.
Section V draws final remarks.

II. COLLISION AVOIDANCE USE-CASE & ETSI ITS STACK

We describe the collision avoidance use-case and
application, and introduce the relevant ETSI ITS elements.

A. Collision Avoidance Use-Case

We showcase the use of the testbed in a specific application:
collision avoidance supported by the infrastructure. This
application is useful in many real-world scenario. Similar
use-cases have been proposed in the context of ETSI ITS [14,
scenario C.1.3.2] (Stationary vehicle warning) and C-V2X [15,
Use-case 4.10] (Obstructed View Assist). In our use-case,
we can focus on the scenario of two simultaneous vehicles
entering an intersection where a blind corner exists, and thus
the vehicles do not have Line-of-Sight visually nor wirelessly.

Judiciously placed road-side infrastructure can play a role
in safeguarding passengers’ and road users’ safety in such
scenario. We assume that the infrastructure is equipped: (i)
with ETSI ITS-capable Road-Side Units (RSU), and (ii)
sensors, particularly a camera that monitors a region-of-
interest. Note that the road-side infrastructure could also
receive information from a centralized transit management
service (we assume this not to be available) or from CA
Messages (CAM) broadcast by vehicles (although not all
vehicles may be ETSI ITS-capable, thus motivating the
need for road-side sensors). As the road-side infrastructure
receives the status updates of a protagonist vehicle, via the
regular CAMs issued by its ETSI ITS-capable transceivers
(the On-board Unit – OBU), and the infrastructure also
detects (via camera) another non-ETSI ITS capable vehicle
or road-user of other kind is entering the region-of-interest, it
will issue a DEN Message (DENM) to the protagonist vehicle
about an impending collision. This is represented in Figure 1.

ETSI ITS-
-capable 
Vehicle

Non-ETSI 
ITS-capable

Vehicle

Road-side camera
ETSI ITS

Road-side Unit

Obstacle impeding
Line-of-Sight

Region of
Interest

Fig. 1: Collision Avoidance use-case & system

This application can be implemented by a ETSI ITS Colli-
sion Avoidance System. In terms of hardware and software, it
has the following requirements: ETSI ITS-capable transceivers
on both protagonist vehicle (OBU) and infrastructure (RSU),
and a road-side infrastructure that is able to capture a video
stream of a given area, perform object detection, identify a
potential collision, and prepare and send a DENM that will
lead the protagonist vehicle to carry out emergency braking.
Prior to discussing the architecture and implementation of
such a system (Section III), we introduce the ETSI ITS stack
and application of DEN messages to this particular scenario.

B. ETSI ITS Architecture

ETSI ITS specifies a communication stack for Intelligent
Transportation Systems in the domain of road transportation
The stack is composed of four fundamental layers –
Access (PHY/MAC), Networking & Transport, Facilities and
Applications –, with the Facilities Layer providing some of the
most noteworthy services, namely the Cooperative Awareness
(CA) and Decentralized Environmental Notification (DEN)
services. The CA service cyclically broadcasts (with variable
periodicity) Cooperative Awareness Messages (CAM)
containing relevant information of an ITS station, while the
DEN service specifies messages to warn road users of events.
These services are connected to the Local Dynamic Map
(LDM) facility, that is responsible for receiving and storing
the messages from the underlying services. The LDM builds
a digital map of all dynamic objects and road details, such as
traffic lights, that may be sensed by the own station or through
near-by road users through messages like CAM. The relevance
of these services comes from the fact they provide facilities
for upper layer ITS applications to achieve their goals.

C. Decentralized Environmental Notification Messages

DENMs [16] are used to advertise events. After an event is
detected by an ITS station, it transmits a DENM to disseminate
the occurrence to other stations that are nearby. The transmis-
sion is initiated by the application layer. Contrary to CAMs,
DENMs can be forwarded by the receiving stations as the ob-
jective is to warn a certain region of interest. Every event needs
to be characterized by its type, position, the time of detection

2



ITS PDU
HEADER

Management
Container

Situation
Container

(Optional)

Location
Container

(Optional)

À la carte
Container

(Optional)

DENM

Fig. 2: Structure of a DENM (from [16])

and duration. Every DENM follows a structure made of a com-
mon header and various containers, some of which optional,
as seen in Figure 2. The Header contains information about
the protocol version, type of message and station ID from the
origin of the message. The Management container includes
information about the event the DENM refers to; fields are
ActionID, time of detection, position of event and the type
of station that sent the message, among others. The DENM
Situation Container is optional and characterizes the detected
event. Obligatorily, it must include informationQuality and
eventType, that provides a description for the detected event
using a number correspondent to a certain type. This identifier
unfolds in two, the causeCode and subCauseCode describe the
event even more accurately. For example, a DENM indicating
a stationary vehicle detected in the road would contain a
causeCode of 94; in addition, a subCauseCode of 1 would
indicate a human problem and 2 a vehicle breakdown. The
Location container provides information about the location of
the signaled event. It must include traces, a field that indicates
one or more itineraries one could follow to find the event. The
À la carte container provides optional information such as
lanePosition, externalTemperature and stationaryVehicle.

D. ETSI ITS DENMs in this Use-case

The Situation Container contains a slot dedicated to
information about the type of event that the DENM refers to,
called eventType. The eventType field is divided into two data
elements, the causeCode and the subCauseCode, that allow
to more accurately draw the situation through the message.
Examining Table 10 of [16], one can see the variety and abun-
dance of codes that represent the most specific of situations,
replicated in Table I. The basic set of applications of ETSI
ITS [14] describes a Cause code named Stationary Vehicle
Warning. Code 10 warns of a hazardous location due to an
obstacle on the road, which can include a stopped vehicle. If a
vehicle continues approaching that location without taking due
measures, the edge node may identify the risk of a collision
and use Code 97 and warn that a collision may be imminent.

III. ETSI ITS SCALE TESTBED

We describe the testbed that implements the ETSI ITS
Collision Avoidance System in laboratory context.

A. Architecture & Implementation Overview

From a physical deployment point of view, the ETSI ITS
Collision Avoidance System can be broken down into two
main parts: the road-side infrastructure, and the in-vehicle
system. The road-side infrastructure encompasses a video
source (camera) that monitors permanently an area of interest,

TABLE I: Some available cause codes (from [16])

Direct
Cause
Code

Cause
Description

Sub
cause
Code

Sub cause Description

9
Hazardous
location - Sur-
face condition

0 Unavailable
1 to 9 As specified in tec109 of clause

9.18 inTISA TAWG11071 [i.10]

10
Hazardous lo-
cation - Obsta-
cle on the road

0 Unavailable
1 to 7 As specified in tec110 of clause

9.19 in TISA TAWG11071 [i.10]

97 Collision Risk

0 Unavailable
1 Longitudinal collision risk
2 Crossing collision risk
3 Lateral collision risk
4 Collision risk involving vulnerable

road-user

99 Dangerous
Situation

0 Unavailable
1 Emergency electronic brake lights
2 Pre-crash system activated
3 ESP(Electronic Stability Program)

activated
4 ABS (Anti-lock braking system)

activated
5 AEB (Automatic Emergency

braking) activated
6 Brake warning activated
7 Collision risk warning activated

a Object Detection Service that performs object detection from
the video stream and determines the dynamics of the vehicles
(motion direction vector); a Hazard Advertisement Service
that identifies a potential collision and triggers the sending of
a message via the OBU, and ultimately the ETSI ITS stack,
that sends a DENMs that properly described the event.

At the vehicle, the following components exist: the ETSI
ITS stack and radio, that receives DENMs and the Message
Handler module, to which the received DENMs is delivered to
interpret the content of the message; and the Motion Planner,
a module of the vehicle that decides the next actions of the
vehicle on the short/medium term and takes into consideration,
besides its own sensors and navigation information, the data
received from the network. Figure 3 presents the end-to-end
sequence of components that make up the system.

If an on-coming vehicle crosses a point of the road, the
Object Detection Service identifies it and contacts the Hazard
Advertisement Service to assess a potential collision from
consulting the LDM. If so happens, the Hazard Advertisement
Service instruct to ETSI ITS stack to send a DENM. At the
vehicle, a Message Handler checks for new messages and
if a DENM is detected, the information is transmitted to
the vehicle’s Motion Planner. Then, if the DENM contains
such information that an emergency brake is needed, the stop
procedure is sent to the engine actuator in order to stop the
vehicle. This behavior is further exemplified in the sequence
diagram in Figure 4, where we can see the expected flow of
the information and messages along the system.

We implemented the above software architecture in actual
communications, sensing and processing equipment that do
not present relevant differences from the one that would
be used in real-world conditions. Furthermore, we deploy
this equipment in a 1/10-scale robotic testbed that may be

3



Road-side 
Camera

Object 
Detection 
Service

Hazard 
Advertisement 

Service

ETSI ITS  
Software  

Stack

ETSI ITS  
Software  

Stack

Message
Handler

Motion
Planner

Vehicle
Actuators

Road Side Infrastructure Vehicle

Wireless  
Link

Fig. 3: Components of the ETSI ITS Collision Avoidance System
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Fig. 4: Sequence diagram of the ETSI ITS Collision Avoidance System
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Fig. 5: HW architecture of robotic vehicles (updated from [10]).

leveraged to experiment and prototype wireless vehicular
applications prior to deployment in actual vehicles. We
provide further description of our implementation of the
testbed in the next sections. For convenience, the following
breakdown is observed: scale vehicles, road-side sensor and
computation infrastructure, and OpenC2X-capable devices.

B. Scale Robotic Vehicles

A 1/10 scale vehicle testbed dedicated to prototyping
autonomous driving protocols, named CopaDrive [10], is used
as a physical manifestation of the scenario. It is based on
the F1/10 platform [13], an open-source autonomous vehicle
project that describes the complete platform, including chassis,
sensors and computation, power board and the communication
architecture. The vehicle is based on a Traxxas Rally car
1/10 scale model, uing its chassis and power train, including
the batteries. It has 4-wheel drive, a top speed of up to 60
km/h and rubber tires with tread that further approximate
it to a real scenario. The electric motor is controlled by
an Electronic Speed Controller (ESC) using Pulse Width
Modulation (PWM). Computational power is guaranteed by
a Nvidia Jetson TX2 computer, that is installed on top of the
Traxxas chassis, running ROS (Robotic Operating System).
A Teensy Microcontroller Unit (MCU) interfaces the Jetson
with motor and steering. The following sensors are installed:
a ZED depth camera capable of stereo vision, an Hokuyo
scanning LiDAR and an Inertial Measurement unit (IMU).
Figure 5 describes the hardware architecture.

The vehicle is currently configured to perform a simple line
following procedure. However, the available equipment allow

Fig. 6: Line decision algorithm structure.

it to navigate a closed-circuit fully autonomously [10], a fea-
ture that was deemed unnecessary in this context. The vehicle’s
internal operation is as follows. The ZED camera captures
video that is sent to the Jetson through a Robot Operating
System (ROS) topic, to the Line Detection algorithm. We use
Canny edge detection function from OpenCV1 to detect the
edge between the line and the floor. After detecting the edges
and applying a region filter to only receive the center of the
image, we apply a probabilistic Hough Lines Transform [17]
with the objective of receiving the coordinates of the detected
lines. These lines and their respective coordinates are then
transmitted to the Motion Planner module as ROS topics. The
Motion Planner computes two pairs of coordinates from the
line coordinates: its own position and the endpoint of the line
where the car aims to be. In order to calculate the steering
angle to be transmitted from the Motion Planner to the module,
a Proportional-Integral-Derivative (PID) controller is imple-
mented. The steering angle is then transmitted to the Control
module, that uses Universal Synchronous/Asynchronous Re-
ceiver Transmitter (USART) to make a PWM signal reach the
DC motor and servo through the Teensy module. The sequence
of steps of the line decision algorithm is shown in Figure 6.

C. Road-Side Camera and Image Processing at Edge Node

The edge infrastructure is meant to detects events and
issue DEN messages when necessary. Hardware-wise, the
software components of Figure 3 are provided or hosted by a
Zed camera2 as video source, a Nvidia Jetson NX as an edge
computing node (hosting Object Detection Service and Hazard
Advertisement Service). The overall edge infrastructure is
shown in Figure 9.

1https://opencv.org/
2https://www.stereolabs.com/
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1) Image Processing Setup: For the purpose of learning its
surroundings, we use the object detection library YOLO [18]
at the computing device. In a glimpse, given a figure, YOLO
predicts multiple bounding boxes and object class probabilities
for those boxes. YOLO does this resorting to a single convolu-
tional network that analysis the whole figure at once; to accom-
plish this, YOLO is built on the open-source neural network
framework Darknet3. YOLO also offers a distance estimation
functionality for the objects identified by the bounding boxes.

For YOLO to run at real-time speeds, the computing device
needs to support NVidia CUDA acceleration. To meet this
requirement, we use a Nvidia Jetson Xavier NX running
Ubuntu 18.04 LTS and CUDA 10.24 to that end. On this
device, we had to install Stereo Lab’s own ZED development
kit, CUDA Deep Neural Network Library (cuDNN)5 (a GPU-
accelerated library of primitives for deep neural networks)
and OpenCV 4.6.0, an open source computer vision library
were also installed. The GPU and CUDNN options were
activated to use GPU acceleration with CUDA and cuDNN,
respectively. OpenCV allows the detection on live video feeds
from cameras and the libso option builds a darknet library
libdarknet.so necessary for the Python implementation used.

2) Event Detection at Edge Node & Challenges: The
road-side infrastructure of the ETSI ITS Collision Avoidance
System will be monitoring a Region of Interest to detect
road-users that enter it and issue a DENM to the protagonist
vehicle in order to prevent a collision. The selected event
was that the road-user would reach a certain distance to the
camera, using the distance estimation functionality of the
YOLO library. On preliminary tests, we identified that YOLO
can only detect objects up to approximately 75 cm; under
this value, estimated distance defaults to 1.73m. Hence the
threshold distance was set to this value.

A particular challenge was the identification of the robotic
vehicle as such by YOLO. The lack of common features
such as bodywork and headlights on our vehicle hindered
the accuracy of the detection. From a 3/4 view of the front
of the vehicle and at less than 2 meters of distance, YOLO
classified the vehicle as a motorbike (as seen in Figure 7a).
However, this identification was inconsistent and varied from
each analysed frame. In an attempt to approximate this work
to a real world scenario, we experimented with adding the
original Traxxas rally car body shell to the autonomous
vehicle. This shell includes recognizable features of a real
car like headlights and the overall shape. This new version
of the vehicle was recognized by YOLO (Figure 7b), but
remained unreliable: identified object class oscillated between
car and truck, it was very sensitive to the angle w.r.t. the
camera, and the range of recognition was very short. Finally,
a cardboard stop sign placed on top of the car proved to
be the most resilient option. The stop sign does not cause
doubt to the recognition software. Figure 7c shows how the

3https://pjreddie.com/darknet/
4https://developer.nvidia.com/about-cuda
5https://developer.nvidia.com/cudnn

(a) Vehicle recognized as motorbike.

(b) Vehicle recognized as truck.

(c) STOP sign detection proved to be the most resilient.

Fig. 7: Explored options to achieve steady, reliable detection.

software detects the sign and assigns a box to it, even in a
case where it also associates the vehicle to a motorbike tag.

D. OpenC2X deployments in the OBUs

OpenC2X [19] is an open-source implementation of the
ETSI ITS stack. It also offers several applications, notably to
trigger the transmission of CAMs/DENMs, that are accessible
to the user via an HTTP API. In our testbed, OpenC2X was
deployed in two PCEngines APU2 single-board computers
equipped with a Compex WLE200NX wireless module,
capable of operating in the frequency range needed for
IEEE 802.11p [20]. There are several commercial options
of OBU/RSU, such as Commsignia V2X OBU unit6, UNEX
OBU-301x7, Codha’s Mk5 OBU8, and Ettifos V2X OBU9.
These impose, however, some barriers to simple prototyping
goals, such as cost, proprietary/closed stacks, and development

6https://www.commsignia.com/
7https://www.unex.com.tw
8https://www.cohdawireless.com/solutions/hardware/mk5-obu/
9https://www.ettifos.com/
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environment (SDKs) lock-in. This motivated our option for
the open-source alternative OpenC2X, for which multiple
testimonies of successful usage exist [20]–[22].

The software structure of OpenC2X (described in detail
in [19]) relates closely to that of the ETSI ITS stack. A DEN
App triggers the sending of a DENM message when executed
(with a similar The CAM service for periodic messages
transmissions). The Local Dynamic Map (LDM) is a digital
map that represents static road-related information (curbs,
pedestrian walking, bicycle paths and road furniture such as
traffic signs and traffic lights) and dynamic entities such as
road-users, either directly sensed or indicated by other road
users, thus enabling cooperative perception. Of noteworthy
relevance are the Server/Web Interface, that represents
graphically the georeferenced information contained in the
LDM, with the two being interfaced by the Server, and allows
the sending of DENMs and CAMs.

1) Updating Message Types & Compilation Procedure:
The contents of each container of the CAM and DENM can
be found in the common/asn folder of OpenC2X, in the form
of .ASN files. Modifying these files and recompiling with
the asn1 compiler alters the content and the shape of the
containers. Inspecting the LDM showed us that the DENM
information was being stored statically in a sqlite3 database.
Adding the ability of reading/writing the information of the
container identified in Section II-D requires editing the LDM
file. Due to time constraints this was not done; the testbed
here presented has used solely DENMs with the mandatory
structure (Header and Management Container).

OpenC2X has an embedded branch that integrates the
software into OpenWRT, including the necessary patches to
enable 802.11p. The testimony of [21] proved valuable to get
it working correctly.In the end of the build, a flashable image
of OpenWRT with OpenC2X included is available.

2) Integration of OpenC2X in Vehicle and Road-Side
Infrastruture: At the vehicle, a Python script running at the
Jetson TX2 is constantly communicating with the OpenC2X’s
HTTP API hosted at the OBU, through POST requests sent
to http://<OBU IP>:<OpenC2X Web port>/request denm.
If no DENM is found, it only returns an HTTP 200 success
status code. If a DENM was received by the OBU, a response
to the request is sent and power to the wheels is interrupted
by the control logic at the Jetson, stopping the car.

On the road-side infrastructure, another instance of
OpenC2X is running on the RSU, and likewise to the
OBU, its HTTP API is also used to transmit CAM or DEN
messages. If an event is detected through the camera, a
POST request is sent to http://<OBU IP>:<OpenC2X Web
port>/trigger denm, which in turn will trigger the OpenC2X
instance to transmit a DENM.

IV. SYSTEM DELAY & BRAKING PERFORMANCE

In this section, we report the temporal response of the
end-to-end system. Although less relevant, we also report the
braking distance in our testbed. A discussion on the pertinence
and applicability of this testbed concludes the section.

Fig. 8: Testing conditions.

The experimental setup is shown in Figure 8. For
convenience, we use the same vehicle as both the road-user
that will be approaching or entering a critical area, as well
as the protagonist vehicle that is informed wirelessly to stop.
While this does not follow closely the intended use-case, it
nevertheless showcases all the required functionalities. The
vehicle (bottom) begins the test by following the line on
the floor autonomously. The ZED camera (top) monitors the
Region of Interest, and once the Action Point (shown as
the blue line at the right), set as a threshold distance to the
camera, is crossed, a DENM is sent. The core of the edge
infrastructure (shown separately in Figure 9), composed of
the Nvidia Jetson NX and OBU, detects the vehicle’s position
from the camera’s videostream and issues the DENM. When
the vehicle’s control logic is made aware that a DENM has
arrived, all power supply to the wheels is cut.

A. Latency of Emergency Braking System

1) Measurement Setup: We characterize the time it takes
since the hazard is detected by the road-side infrastructure
until activation of the actuators at the vehicle. To that end,
timestamps were collected through the various steps of the
chain of action, in order to measure the time elapsed intervals
between the stages/components shown in Figure 4.

1) Step 1: the vehicle reaches the Action Point (the point at
which the brakes must be applied as soon as possible).

2) Step 2: the YOLO software outputs an identification of
the vehicle and that it is at the Action Point.

3) Step 3: the RSU sends a DEN message, on request by
the edge node.

6



Fig. 9: Edge system components assembled.

Fig. 10: Video frames to obtain detection-to-stop period.

4) Step 4: the OBU receives the DEN message.
5) Step 5: power to the wheels is cut.
6) Step 6: the vehicle comes to a halt.
All platforms were connected to a Network Time Protocol

server to reliably collect timestamps. Timestamps of each
step were collected in the following manner:

• Step 2: the YOLO software registers the time the vehicle
is crossing the Action Point.

• Step 3: the RSU registers the time of sending of DENMs.
• Step 4: the OBU registers the time of DENM reception.
• Step 5: the vehicle ECU registers the time at which a

command is sent to the physical actuators.
As for the overall time between step 1 and 6, one can look

at the video recording of the road side camera and measure
the interval between the crossing of the action point and the
complete stop of the vehicle. Figure 10 depicts the instant
the vehicle is reaching the Action Point. The processing is
done at approximately 4 Frames per Second (FPS), so a small
error margin on detection exists. In the video for run #4 10, at
51:02 (S:ms), the vehicle crosses the 1.52m action point and is
detected at 1.45m; and at instant 51:22 (S:ms), the car stops.

2) End-to-end Latency: The results of five test runs are
shown on Table II. Communication between RSU/OBU
represents a minimal part of the total time between the

10https://youtu.be/0rC8FvmGA24https://youtu.be/0rC8FvmGA24

TABLE II: Time interval measurements

Interval between Steps Run # Avg. Units#1 #2 #3 #4 #5
#2: Action Point Detection 34 27 27 21 29 27,6 (ms)
#3: RSU sends DENM
#3: RSU sends DENM 1 2 2 1 2 1,6 (ms)
#4: OBU receives DENM
#4: OBU receives DENM 36 41 23 22 24 29,2 (ms)#5: Vehicle Actuators
Total Delay 71 70 52 44 55 58,4 (ms)

40 45 50 55 60 65 70 75
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Fig. 11: Empirical distribution function of total time samples

TABLE III: Distance travelled from detection to halt

Run #1 #2 #3 #4 #5 #6 #7
Braking Dist. (m) 0.43 0.37 0.31 0.42 0.31 0.36 0.36

activation point and the deployment of the actuators, with an
average time of 1.6 ms. On average, the time between step
2 and 5 was 58.4 ms and in none of the five runs exceeded
100ms, making it a very responsive system. The total time
values from Figure II can be observed in Figure11, on the
Empirical Distribution Function (EDF) graph. We observe
that 60% of the samples occur between 44 and 55 ms,
whereas the remaining 40% occur between 70 and 71 ms.

B. Braking Distance

In the real world, a compelling metric for the collision
avoidance application would be the braking distance. The
previously mentioned Action Point is set as a reasonable
threshold distance at the vehicle should initiate braking to
avoid a collision; accordingly, the vehicle’s actual braking
distance should be within that threshold distance. In the
context of the presented testbed, the relevance of these
values may be limited but they can, in future, be related to
the stopping power of full size vehicles, through dedicated
models of vehicle inertia, floor-wheel friction and air drag.

The values for the seven test runs can be seen in Table III,
The actual measurements were made with a measuring tape,
forming a straight line from the ZED camera lens and the stop
sign on the vehicle. The braking distance, based on the real
measurements, was on average 36 centimeters with a variance
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of 0.0022. The average braking distance is less than one
vehicle length, that measures approximately 53 centimeters.

C. Discussion & Outlook

The measured end-to-end delay between the detection by
the infrastructure and the actuation of the vehicle stopping
systems is consistently under 100ms. Overall, the designed
system proved to be a reliable and effective way to deliver
an emergency message to a vehicle. The wireless equipment
used in this context is the same as it would be used in the
real-world, hence this work serves as a proof-of-concept
ready to be deployed. Further work is required to properly
model attenuation, either by interference or shadowing caused
by own vehicle or others. The braking distance reveals, at this
point, much less actionable information. Mapping the braking
performance observed from the scale to real-world vehicles
would allow to extract more insights. Using parameters of
the full-size vehicles, such as stopping power, weight and
frontal area, models can be drawn to map braking distances
observed in the testbed to real-world ones.

The present exercise also shows the complexities of
bringing together subsystems of different nature. We highlight
particularly the object detection service, that brought
challenges of its own such as the accurate identification of
the scale vehicle. The end-to-end delay is, thus, not only
dependent on the communication equipment but also of other
subsystems that will be deployed on location and also require
temporal characterization. Finally, observing the vehicle
actually stopping (or not) brings immediate visual feedback
as to whether the full processing chain is operating properly,
thus conferring value to the testbed.

V. CONCLUSIONS AND FUTURE WORK

The present testbed allows to test and validate a V2X appli-
cation using actual communications equipment that mimics a
real world scenario through the form of an emergency braking
procedure informed by the network. A road-side infrastructure
monitors a region-of-interest, and once a vehicle is detected in
that region, ETSI ITS messages are sent by the infrastructure
to trigger an emergency braking action by the vehicle. The ob-
tained results demonstrate a system that is capable of detecting
and communicating with a vehicle in a very short time span.

Future work will involve improving various aspects. We
will carry out more measurements to produce a more com-
prehensive CDF of end-to-end latency, and possibly model
it with an appropriate distribution so that it can be used by
the community. We are currently installing a 5G module in
the robotic vehicles, to compare the same detection-to-action
delay over a different interface and network. We also plan to
extend the testbed to support connected platoons (i.e., more
robotic vehicles that are following each other), and evaluate
the detection-to-action delay for the entire platoon. There is
room to explore multi-technology solutions in this later case
(e.g., platoon leader is 5G-capable while intra-platoon message
forwarding is based on IEEE 802.11p), leading to a more com-
plex arrangement that can impact detection-to-action delay.
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