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Abstract. Despite the explosion of IoT deployments at Internet Service
Provider (ISP) customer networks, such devices remain vulnerable to cyber-
attacks. We present a ML-based anomaly detection system, to be deployed
at the Customer Premises Equipment (CPE), that leverages several One-Class
Classification algorithms and majority voting to detect anomalous network
traffic. We train these models using not only conventional per-flow features but
also features extracted from sliding windows of flows. An extensive evaluation,
using publicly available datasets shows that our algorithm has a higher detection
rate than commonly supervised-learning algorithms, which require the use of
labelled datasets. Our evaluation suggests that the detection capabilities of
our algorithm are only marginally affected by Packet Acceleration, a technique
used by CPEs to improve throughput but that reduces the number of packets
(per flow) available to extract features from.

Keywords: IoT · Intrusion Detection System · One-Class Classification.

1 Introduction

By the end of 2020, cybercrime-derived losses approached $1 trillion [3]. A particular
type of cyberattacks is Denial-of-Service (DoS), in which a malicious agent floods a
target server with a number of requests that exceeds the server’s capacity, thus denying
access to legitimate users. A Distributed DoS (DDoS) attack generates traffic from a very
large number of sources that have been infected previously with malware (botnet) that
is under remote control from a Command and Control (C&C) server. The distributed
nature of this attack makes it hard to counteract, because the traffic pattern generated
by the devices may be difficult to distinguish from regular traffic. A well-known malware
used in DDoS attacks is Mirai, which targeted domestic IoT devices such as surveillance
cameras, DVRs and routers, and was responsible, among others, for a DDoS attack
to French webhost and cloud service provider OVH that peaked at 1.1 Tbps [6].

IoT devices are often not equipped with levels of protection similar to personal
devices (e.g., laptops, smart phones), and attackers explore such ill-protected devices for
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Fig. 1. Context of operation and placement of proposed IDS

infection and attack. With the growing number of IoT devices deployed at their customer
premises, Internet Service Providers (ISPs) are interested in protecting their customers
networks as well as their own. In this paper we describe Machine Learning (ML) models
for an Intrusion Detection System (IDS) to be deployed at the Customer Premises
Equipment (CPE), an ISP-provided equipment that enables Internet connectivity and
local networking, as shown in Fig. 1. The goal is to monitor the network traffic at the CPE
and use ML techniques to detect anomalies. More specifically, we present an anomaly
detector that uses several one-class classification (OCC) models and majority voting to
classify network traffic as either legitimate or (potentially) malicious. Model training can
happen either at the CPE or be offloaded to the cloud. As CPEs have limited computing
power, we foresee training to be cloud-based and trained models to be deployed at the
CPE for inference; however, we do not address this aspect of the system in this paper.

The deployment of the IDS at the CPE runs into another specific challenge: CPEs
typically resort to packet accelerators (PA) to speed up packet processing. As a result,
the IDS only has access to the first few packets of each traffic flow, i.e. it must make
predictions based only on those packets.

Our contributions can be summarized as follows.
– Use of features of a sliding window of traffic flows in combination with

traditional traffic flow features.
– Use of a refined hyperparameter tuning strategy for training each of the

OCC models and of majority voting for prediction. This combination leads to a
model that has a higher detection rate than models using supervised learning.

– An extensive evaluation of the prediction accuracy with and without packet accel-
eration (PA), indicating that PA does not affect performance significantly.
The remainder of this paper is as follows. Section 2 reviews the relevant state-of-

the-art. Section 3 details the datasets identified and used in this work, followed by
the developed ML pipeline. A performance evaluation of the system is presented in
Section 4. Section 5 draws final remarks.

2 Related Work on ML-based IDS for IoT Networks

In this section, we focus our review on detection of (D)DoS and Botnet infections in IoT
networks, due to the growing relevance of such attacks. A broader review of the research
on the application of ML to IDS for IoT networks can be found in survey papers
like [2] and [4]. Nõmm and Bahşi [17] developed an anomaly-based detection system
with emphasis on reducing model dimension. They compared a common model with
device-specific models using iForest and SVM and concluded that, for some devices, a
common model had significantly lower detection performance, due to the complexity and
uniqueness of some devices. Lima Filho et al. [14] developed Smart Detection, an ML
system for DoS/DDoS detection. The authors used a dataset of their own and three public



One-Class Models for Intrusion Detection at ISP Customer Networks 3

datasets to validate their Random Forest based model; results showed that the system was
capable of accurately detecting different types of DoS attacks such as TCP/UDP/HTTP
floods. Yuan et al. [21] developed DeepDefense, a Deep Learning detection system with
emphasis on DDoS. By using various types of Recurrent Neural Networks (RNN), such
as LSTM, authors achieved a reduction of the error rate from 7.517% to 2.103%, with
respect to Random Forest. Other line of research is the detection as early as possible of
infection by botnets such as Mirai. Kumar and Lim [13] developed Early Detection of
IoT Malware Network Activity (EDIMA), a botnet detection system aimed at identifying
malware activity during the scanning and infection phases. They used their own dataset
to simulate the characteristics of the original Mirai code during the initial phases and
this data was fed to models based on Random Forest, k-NN and Naive Bayes, obtaining
good results on the scoring metrics. Meidan et al. [16] developed an anomaly-based IDS
for botnet detection using deep learning techniques. They trained an autoencoder for
each IoT device to capture their normal traffic behavior, and evaluated their method
by deploying the Mirai and BASHLITE botnets. Every attack was successfully detected
with a low false positive rate. McDermott et al. [15] deployed a Deep Learning approach
to detect botnet activity, based on Bidirectional Long Short Term Memory based
Recurrent Neural Networks (BLSTM-RNN). The authors produced their own dataset
with Mirai attack samples; BLSTM-RNN was compared to LSTM-RNN and the results
showed high accuracy in the detection of botnets and other related attacks.

Our work focus on one-class classification (OCC) algorithms, as [17], but it considers a
larger number of algorithms and uses majority voting to improve the detection rate and
reduce the false positive rate. Furthermore, it uses inter-flow (sliding window) features to
improve those metrics, and evaluates the effect of packet acceleration, a feature typically
used by CPEs to increase their bandwidth. To develop our system, we carried out a careful
review of publicly-available datasets and judiciously combined them to obtain a composite
dataset that features both personal and IoT traffic with adequate representativeness.

3 Machine Learning Models for Anomaly Detection

We describe the training of the Machine Learning models used in this Intrusion De-
tection System. The goal of this system is to detect anomalous traffic at or to/from
the customer network, i.e., traffic that differs considerably from the typical observed
behaviour and that can be presumed to be malicious traffic.

Two particular decisions have influenced our approach. The first one was to train ML
models solely with legitimate data, under the assumption that malicious traffic datasets
are hard to obtain or of little use, as unknown attacks may operate differently than exist-
ing ones. As mentioned in Section 1, this option lead to the use of OCC models. The sec-
ond one was to use two types of legitimate traffic: IoT and normal traffic. By IoT traffic,
we mean traffic generated by devices that collect data or perform simple home tasks. IoT
devices connected to a home network include IP security cameras, smart bulbs and door
sensors. The traffic volume generated by these devices is typically low (with exceptions
such as camera video streams), the connections are periodic and relatively repetitive [1].
Normal traffic is usually generated directly by humans on their personal devices, such as
laptops and smartphones; examples are web browsing, gaming and video conferencing.

The two above decisions informed our selection of publicly available datasets; these
are described in Section 3.1. Used features and extraction procedure are described
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Table 1. Selected datasets and types of traces.
Datasets IoT Traces Normal Traces Attack Traces
UNSW-IoT

√
X

√

Bot-IoT
√

X
√

IoT-23
√

X
√

CTU-Normal X
√

X
NOS provided

√ √
X

Table 2. Traces Used For Training And Validating The Models
Dataset Training Hyperparameter

Tuning Evaluation Capture details

B
en

ig
n

UNSW-IoT #1 2000 2000 1832 Amazon Echo, Netatmo camera, Lixf light, WEMO power switch
UNSW-IoT #2 - - 5331 iHome, Samsung camera, Hue bulb, TP Link plug
IoT-23 - - 486 Amazon Echo, Hue bulb, Somfy door lock
NOS - IoT - - 10 Smart plug, temperature and humidity sensors
CTU-Normal #1 2000 2000 27639 Automated capture, top 500 websites: 1-30, 61-120, 241-360

CTU-Normal #2 - - 31790 Automated capture, top 500 websites: 31-60, 150-240, 361-500
and manual capture of web traffic

NOS -Normal - - 295 Manual capture of web traffic

M
al

ig
n

Bot-IoT - TCP DDoS - 2000 35585 TCP floods generated using hping3
Bot-IoT - HTTP DDoS - - 19180 HTTP request floods using Golden-eye
Bot-IoT - OS Scan - - 68 OS fingerprinting using Nmap and Xprobe2
Bot-IoT - Service Scan - 2000 34885 Different port scans using Nmap and Hping3
Bot-IoT - Keylogging - - 1464 Record keystrokes with Logkeys or exploits
Bot-IoT - Data Theft - - 197 Directory exfiltration through system exploits
IoT-23 - DDoS - - 114 DDoS attack part of a botnet
IoT-23 - Port Scan - - 68 Port scans part of a botnet
IoT-23 - C&C - - 4094 C&C communication part of a botnet

in Section 3.2. Lastly, in Section 3.3, we describe the selected OCC ML models, the
majority voting procedure developed to aggregate the output of the various models
into a single classification, and the hyperparameter tuning procedure carried out at
training to improve accuracy.

3.1 Public Datasets Description

The datasets relevant to this work, and that would be captured by the Customer
Premises Equipment (CPE), are composed of packet capture traces. Sequences of
packets that have similar characteristics (e.g., same source and destination nodes) and
occur in temporal proximity can be aggregated in flows. In TCP-based transactions,
flows are named connections, and the start and end of transactions are explicitly
identified with dedicated packets. Our OCC models use as features mainly statistical
characteristics of flows. After introducing the used datasets, we discuss the process of
mapping raw packet captures into flow descriptions.

Used datasets were the UNSW-IoT [19], Bot-IoT [12, 11, 10, 8, 9, 7], IoT-23 [5],
CTU-Normal [20], and the NOS data set (produced by portuguese ISP NOS and
not publicly disclosed at this moment). The combination of these provides sets of IoT
and normal traffic samples from different scenarios, as well as samples from different
types of attacks that commonly affect the devices in question. Table 1 outlines the
types of samples present in each of these datasets.

The UNSW-IoT dataset was separated into two subsets with devices of similar types,
as shown in Table 2. The first set (UNSW-IoT #1) was used for the hyperparameter
tuning selection, as described in Section 3.3, and training with different samples from
that subset afterwards. The remaining samples are used for evaluation. The second
set (UNSW-IoT #2) is used solely for inference, to evaluate the model’s ability to
correctly recognise new traffic of a similar type. We took a similar approach for the
normal traffic, with the the first set (CTU-Normal #1) being used for training and
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Table 3. Tstat (top) and sliding window (bottom) features
Feature Unit Description

packets - total number of packets observed form the client/server
RST sent 0/1 0 = no RST segment has been sent by the client/server
ACK sent - number of segments with the ACK field set to 1
PURE ACK sent - number of segments with ACK field set to 1 and no data
unique bytes bytes number of bytes sent in the payload
data pkts - number of segments with payload
data bytes bytes number of bytes transmitted in the payload, including retransmissions
rexmit pkts - number of retransmitted segments
rexmit bytes bytes number of retransmitted bytes
out seq pkts - number of segments observed out of sequence
SYN count - number of SYN segments observed (including rtx)
FIN count - number of FIN segments observed (including rtx)
Completion time ms Flow duration since first packet to last packet
C first payload ms Client first segment with payload since the first flow segment
S first payload ms Server first segment with payload since the first flow segment
C last payload ms Client last segment with payload since the first flow segment
S last payload ms Server last segment with payload since the first flow segment
C first ack ms Client first ACK segment (without SYN) since the first flow segment
S first ack ms Server first ACK segment (without SYN) since the first flow segment
sw_fRate_IPSrc flows/s Rate of flows with same origin IP
sw_bRate_IPSrc bytes/s Rate of bytes with same origin IP
sw_pRate_IPSrc pkts/s Rate of packets with same origin IP
sw_fRate_IpPortDst flows/s Rate of flows with same destination IP and Port
sw_bRate_IpPortDst bytes/s Rate of bytes with same destination IP and Port
sw_pRate_IpPortDst pkts/s Rate of packets with same destination IP and Port
sw_isComplete_percentage - Percentage of flows that are complete

hyperparameter tuning and the second (CTU-Normal #2) for evaluation. The rest
of the benign samples from the remaining datasets (IoT-23 and NOS) was used solely
for evaluating the models.

Selected datasets typically either do not have absolute Ground Truth labels, i.e., a label
indicating whether a given flow is legitimate or malicious, or use rule-based external tools
to attribute labels, such as Zeek (https://zeek.org/) or Argus (https://openargus.org/),
which is not appropriate for inference on unseen anomalous traffic patterns since
their rules are too specific. In our work, we resort in great measure to the tstat
(http://tstat.polito.it/) tool (discussed in the next section) to extract flows from raw
packet captures. The issue arises to map one tool’s flows (e.g., tstat) into another tool’s
flows (Zeek or Argus). For that, we developed a tool that allows us to map these labels
of existing datasets into tstat generated logs, thus allowing us to use these datasets
to train the models and still have the large feature generation of tstat.

3.2 Feature Extraction & Description

The raw packet captures are processed to extract flow and inter-flow characteristics
that serve as features in the model training and evaluation procedures.

Flow-based features: The publicly available packet traces were parsed with tstat, a
tool that identifies flows from packet traces. Features that have no statistical relevance
are removed, such as identifiers (e.g., IP addresses), timestamps and highly-contextual
characteristics (e.g., whether address are anonimized/internal or not). Table 3 presents
the flow descriptions produced by tstat that we use to train our models. The feature
values were normalized before applied to the models via Min-Max normalization
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Fig. 2. Boxplot of tstat-generated features for both classes
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Fig. 3. Boxplot of the window-based features per traffic class.

(rescaling the training data to [0,1]). Fig. 2 shows a boxplot of the numerical normalized
features for the benign and malign sets for hyperparameter tuning (see Table 2). It
shows that some features have different distributions for each class, and therefore
should be used to improve the classifiers’ performance. Note that the rest of the data
(hyperparameter tuning and evaluation data) is rescaled using the same reference values
as the training set.

Sliding Window features: While informative, observing specific flows does not
directly give network context (e.g., network throughput) or device context (e.g., device
throughput), and it does not provide much information at a packet level either. We
generated extra features (from tstat’s) using a sliding window of 100 flows (a value
selected empirically), that are also shown in Table 3 (bottom section).

The rate of flows/bytes/packets are calculated by the number of flows/bytes/packets
that occurred in that window, divided by the elapsed time of that window, respectively.
These rates are calculated by original IP address (refered to as client by Tstat, thus
specifying the origin device) and by destination (refered to server by tstat) IP address
and port (thus specifying the destination device/service). Lastly, the percentage of flow
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Fig. 4. Developed prediction pipeline for the proposed IDS

that are classified as complete is calculated. Complete flows are properly initiated (by
a three-way handshake) and closed (by a FIN or RST flag, or after a certain timeout).

Fig. 3 shows the normalized distribution of these derived features per traffic class. We
observe larger values for the malign class, as expected for flood attacks, thus indicating
potential usefulness to the classifiers. Additionally, the percentage of complete flows
feature is nearly maximum for the benign class, indicating most benign flows are
correctly terminated, but low for the malign class, which is expected as many attacks
never get to properly initiate and terminate the connections.

3.3 Selected ML Methods, Decision and Tuning

As refered earlier, we focus on the use of one-class classification (OCC) algorithms.
OCC models receive only benign/legitimate (or negative class) data and attempt to
fit boundaries around these data points. The OCC models used in this work are:
– One-Class Support Vector Machine (OC-SVM)
– Stochastic Gradient Descent One-Class Support Vector Machine (SGD

OC-SVM)
– Local Outlier Factor (LOF)
– Elliptic Curve (EC)
– Isolation Forest (iForest)

Model implementations were provided by the scikit-learn library [18]. At the end,
a single classification output must be provided. Once the models are trained and a
classification is requested, we implement a majority vote strategy, in which the class
with the highest number of votes is output. Fig. 4 describes the complete prediction
ML pipeline, including the feature extraction stage described earlier.

During the training stage, each model has a set of user-defined parameters (i.e.,
hyperparameters) that can be changed as part of a validation process. Optimizing these
based on performance for only the benign class (i.e., true negative rate) might lead to
large or underfit boundaries that maximize performance for the benign class, but then
incorrectly classify malicious samples as also benign leading to high false negative rates.
To compensate for this factor, we used samples of both classes (benign and malign)
when calculating the accuracy of the model with the chosen parameters. The models are
still trained with only benign data, but this validation informed by the two classes allow
for the selection of a good set of hyperparameters that can be later on used for training
new models without the need for validation and, consequently, any malign samples.
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Table 4. Performance of optimized, supervised and PA models

Dataset Tuning Supervised PA
Default Tuned SVM RF NB KNN

B
en

ig
n

UNSW-IoT #1 (T,V) 0.9333 0.9890 1.0000 0.9996 0.9976 0.9999 0.9239
UNSW-IoT #2 0.9650 0.9923 1.0000 0.9998 0.9999 0.9999 0.9939
IoT-23 0.5483 0.9055 1.0000 1.0000 1.0000 1.0000 0.8704
NOS - IoT 1.0000 1.0000 1.0000 1.0000 0.9836 0.9979 1.0000
CTU-Normal #1 (T,V) 0.8392 0.9801 1.0000 0.9995 0.9964 0.9998 0.9893
CTU-Normal #2 0.8378 0.9822 1.0000 0.9997 0.9957 0.9999 0.9929
NOS - Normal 0.0946 0.4358 1.0000 1.0000 0.9223 1.0000 0.4257

M
al

ig
n

Bot-IoT - TCP DDoS (T,V) 1.0000 1.0000 0.9931 1.0000 1.0000 1.0000 1.0000
Bot-IoT - HTTP DDoS 1.0000 0.8612 0.3163 0.9767 0.4203 0.3905 0.9174
Bot-IoT - OS Scan 0.9980 0.9696 0.6419 0.9956 0.9668 0.9594 0.9693
Bot-IoT - Service Scan (T,V) 0.9986 0.9926 0.8118 0.9994 0.9890 0.9946 0.9914
Bot-IoT - Keylogging 1.0000 0.9590 0.0000 0.9980 0.9495 0.8198 0.9235
Bot-IoT - Data Theft 0.9898 0.7959 0.0102 0.9796 0.7602 0.6633 0.7449
IoT-23 - Port Scan 1.0000 1.0000 0.0000 0.0142 1.0000 1.0000 N/A
IoT-23 - DDoS 1.0000 1.0000 0.0000 0.9913 0.9826 0.9913 N/A
IoT-23 - C&C 0.9995 0.9900 0.0000 0.0139 1.0000 1.0000 N/A

Considering the number of samples is limited in one of the chosen datasets, and that
models size can increase drastically with number of training samples, each training
and hyperparameter tuning set is sampled to n=2000 samples, while the remaining
samples are used for evaluation.

4 Results and Discussion

We evaluate the models for different scenarios. The main metric used is accuracy; since
the datasets are separated by class, this directly translates to the True Negative Rate
(TNR) and True Positive Rate (TPR) when prediction for benign or malign traffic, re-
spectively. Note that the results that combine different datasets are a simple average of the
performance for each dataset, i.e. it doesn’t take into account the size of theses datasets.

4.1 Baseline & Tuned Classification Performance

We assess the ability of the ML models to correctly classify unseen traffic samples of
the devices present in a network, as well as from other devices similar to those seen
during training. The models were trained with traffic from UNSW-IoT #1 and
CTU-Normal #1. The most relevant test datasets of benign traffic are the UNSW-
IoT #2 and CTU-Normal #2, since these constitute (different) traffic generated
in the same networks. This subset of data is hereby refered to as UNSW+CTU for
simplicity. The other benign datasets serve the purpose of assessing correct benign
classification of captures in different conditions.

Table 4 (Default column) shows the accuracy when evaluating the ML models for
each benign test dataset without any parameter tuning. Fig. 5 (left side) summarizes the
accuracy of the majority voting of the models with the untuned hyperparameters. The
aggregated decision has a 89.4% accuracy, i.e., TNR, when inferring on UNSW+CTU,
but the average (non-weighted) of the model accuracy per benign dataset is 74.6%.
For the malign datasets, the average of the per dataset accuracy, i.e. TPR, is 99.8%.
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Fig. 5. Comparison between models with untuned (default) and tuned (optimized) parameters
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Fig. 6. Performance of individual models with default and tuned parameters.

We perform the hyperparameter tuning process (Section 3.3) to decrease the false
positive rate of the models. This procedure uses samples from UNSW-IoT #1 and
CTU-Normal #1, and also samples from Bot-IoT TCP DDoS and Bot-IoT
Service Scan for the positive class. Afterwards, we evaluate the tuned models using
the datasets previously used for evaluating the models with default hyperparameters.
As earlier, Table 4 (Tuned column) shows the classification performance per dataset
aggregated across all tuned models, and Fig. 5 (right side) summarizes the accuracy
of the majority voting of the models with tuned hyperparameters. The majority vote
of the tuned models achieves a performance of 98.6% for the UNSW+CTU subset,
and an overall TNR of 89.9% and TPR of 95.2%.

Comparing default and tuned, hyperparameter tuning increases the TNR for the
UNSW+CTU subset from 89.4% to 98.6%. In general tuned models outperform
untuned ones for benign datasets, resulting in a increased TNR from 74.6% to 89.9%.
This comes at the cost of the TPR, that decreases from 99.8% to 95.2%. Overall, this
trade-off alone is advantageous, since the FNR is still under a reasonable 5%, but the
FPR is lower (particularly for the UNSW+CTU dataset), which is important to
avoid raising too many false alerts to the ISP.

Finally, Fig. 6 presents the performance of individual models with default and tuned pa-
rameters aggregated per class. It is worth noting that some models clearly under-perform
with the training data UNSW+CTU dataset (e.g., OC-SVM, LOF), but provide
reasonable accuracy when classifying the other benign datasets. This may indicate statis-
tical differences between the training data and the other benign datasets. Nevertheless,
we observe that the aggregated classification accuracy, obtained through majority vote
of the classifications of all models, improves over the accuracy of the individual models.
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Fig. 7. Performance comparison between the anomaly detector and supervised models

4.2 Anomaly Detection vs. Supervised Learning Comparison

In order to assess how the proposed one-class models compare to traditional supervised
methods, we trained four models of similar nature using traditional SVM, Random
Forests (RF), Naive Bayes (NB) and k-Nearest Neighbors (KNN), more specifically their
respective scikit-learn implementations. We trained these models using the datasets used
for training and for hyperparameter tuning of the one-class models. For hyperparameter
tunning, we used disjoint subsets of the datasets used for training.

Fig. 7 summarizes the accuracy of these supervised models for the evaluation datasets
previously used. Overall, the models present a higher TNR (most over 99%) but lower
TPR (the highest being under 90%) than the AD counterpart. The performance results
for the supervised models are shown in Table 4 (Supervised columns).

The supervised models are better at inferring legitimate traffic correctly than the
tuned version of the OCC models, including datasets for which OCC performed poorly
(e.g., NOS-Normal dataset). Interestingly enough, they generally perform worse for
malign traffic. Therefore, opting for a supervised solution would likely lead to less
false alerts delivered to the ISP, but allow more malicious connections to go through
unnoticed. This trade-off has to be assessed for each use-case, as the acceptable rates
of each kind may vary, e.g., in accordance to Service Level Agreements.

4.3 Impact of Packet Acceleration (PA) on Model Accuracy

As described in Section 1, CPEs can be equipped with packet accelerator to improve
network throughput. This means that the classifiers deployed at the CPE may only
have access to the first few packets of each flow for the inference process (the remaining
packets of the flow are forwarded directly to the outgress port).

To simulate the effect of PA on the available datasets, we trimmed the flows according
to what a PA would do. To do so, NOS (a portuguese ISP) provided us datasets
containing samples of flows with the PA deactivated (untrimmed flows) and activated
(trimmed flows) captured on an actual CPE. We computed the probability mass
functions (PMF) of these two sets of data, and configured tstat to trim flows in all
datasets in a way that the resulting PMF mimics, to the extent possible, the PMF of
the NOS trimmed dataset. datasets. This procedure was done by instructing tstat to
trim flows to 5 packets – the value that we found, by visual inspection, to provide the
best results. While the PMF of the new trimmed datasets did not replicate exactly the
PMF of the NOS trimmed data, we consider a sufficiently similar result was obtained.

We trained and tuned the hyperparameters of the various one-class models using
the same datasets as before, but now using the trimmed versions. Fig. 8 summarizes
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Fig. 8. Performance with or without PA.

the accuracy of these models for the evaluation datasets previously used, but with the
respective flows trimmed. Table 4 (PA column) shows the complete results. Overall,
TNR is about 1.5% lower whereas TPR is about 3.3% lower. This suggests that PA
does not to significantly affect the models classification ability, even when they are
built with trimmed flows.

5 Conclusion

We report the development of ML-based anomaly detection (AD) techniques to be
integrated in an Intrusion Detection System (IDS). The system is able to learn the typical
traffic behaviour in the customer network and flag any anomalous traffic. We trained
a range of AD methods with different underlying operating natures and combine their
outputs into a single verdict using majority voting. To this end, we developed an ML
pipeline that includes, at the training phase, an hyperparameter tuning stage that uses
examples of malicious traffic for refinement. Lastly, we list the publicly-sourced datasets
that used for training and evaluating the models, and that encompass the different
types of traffic expected in home networks. Performance evaluated showed correct
classification rates of around 90% for legitimate traffic; this value increases to around
99% when considering traffic generated within same network conditions as the training
data. It also detects different types of attacks with an average accuracy of around 95%.
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