
1

Privacy-Preserving ML

Project MIRAI - Meeting T2.2/T2.3

October 12, 2021 - Online

Pedro Santos – pss@isep.ipp.pt



Outline

• Overview of Security in ML Contexts

• Goals and Target Stage

• Attacks at Inference and Training Stage

• Attack Surface

• Privacy Attacks in ML

• Privacy Threat Model

• Taxonomy of Privacy Attacks

• Shadow Attacks

• Selected Privacy-preserving Techniques

• Ensemble of Teacher Models

• Differential Privacy

• Distributed Training

• Training over Encrypted Data

• Trusted Execution

30/01/2022 2



Overview of Security 
in ML Contexts
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Goals and Target Stage

Goal of attacks

• Confidentiality and Privacy 

• Such attacks attempt to extract information about the model or training data. 

• When the model itself represents intellectual property, it requires that the model and its parameters be 

confidential.

• Integrity and Availability

• Here the goal is to induce model behavior as chosen by the adversary.

• Attacks attempting to control model outputs are at the heart of integrity attacks — the integrity of the 

inference process is undermined.

Stage Targeted by Attacker

• Attacks at Inference Time

• Attacker causes the model to produce adversary-selected (incorrect) outputs

• Attackers collect evidence about the model characteristics (reconnaissance).

• Attacks at Training Time

• Attacker attempts to learn, influence or corrupt the model itself.
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Attacks at Inference Time

• Goals of attacks at Inference Time:

• Attacker causes the model to produce adversary-selected (incorrect) outputs;

• Attackers collect evidence about the model characteristics (reconnaissance).

• Attacks at inference time —exploratory attacks — do not tamper with the targeted model.

• Inference phase attacks can be classified depending on the attacker knowledge:

• White box attacks: the adversary has some information about the model or its original training data, e.g., ML 

algorithm, model parameters, network structure, or summary, partial, or full training data.

• Black box attacks: assume no knowledge about the model.
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Attacks at Training Time

• Attacks on training attempt to learn, influence or corrupt the model itself.

• Simplest attack is accessing a summary, partial or all of the training data. 

• Depending on the quality and volume of training data, the adversary can create a substitute model to mount attacks. 

• Note that these attacks are offline attempts at model reconnaissance, and thus may be used to undermine privacy.

• There are two broad attack strategies for altering the model. 

• Alter the training data: either by inserting adversarial inputs into the existing training data (injection) or altering the 

training data directly (modification). In the case of reinforcement learning, the adversary may modify the environment 

in which the agent is evolving. 

• Model corruption: the adversaries can tamper with the learning algorithm. Any adversary that can alter the learning 

logic (and thus controls the model itself) is very powerful and difficult to defend against. 
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Attack Surface
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Privacy Attacks in ML
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Privacy Threat Model

Actors

1. The data owners, whose data may be sensitive.

2. The model owners, which may or may not own the data 

and may or may not want to share information about their 

models.

3. The model consumers, that use the services that the model 

owner exposes, usually via some sort of programming or 

user interface.

4. The adversaries, that may also have access to the model’s 

interfaces as a normal consumer does, e.g. feeding new 

input data for inference. If the model owner allows, they 

may have access to the model itself.

Pedro Santos – pss@isep.ipp.pt 9

M. Rigaki and S. Garcia, ‘A Survey of Privacy 
Attacks in Machine Learning’, arXiv:2007.07646 

[cs], Apr. 2021, Accessed: Aug. 06, 2021. [Online]. 
Available: http://arxiv.org/abs/2007.07646



Distributed Learning Scenario
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Types of attack

• Membership Inference Attacks: Membership inference tries to 

determine whether an input sample x was used as part of the 

training set D.

• Reconstruction Attacks: Reconstruction attacks try to recreate 

one or more training samples and/or their respective training 

labels.

• Property Inference Attacks: The ability to extract dataset 

properties which were not explicitly encoded as features or were 

not correlated to the learning task, is called property inference.

• Model Extraction Attacks: Model extraction is a class of black-box 

attacks where the adversary tries to extract information and 

potentially fully reconstruct a model by creating a substitute 

model 𝑓ˆ that behaves very similarly to the model under attack 𝑓.
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Shadow Models (1/2)

• Some supervised learning attacks use shadow models and meta-models to infer 

membership from target datasets / target models.

• The main intuition behind such attacks is that models behave differently when they see 

data that does not belong to the training dataset. 

• The objective of the attacker is to construct an attack model that can recognize such 

differences in the target model’s behavior, and use them to distinguish members from 

non-members of the target model’s training dataset (based solely on the target model’s 

output).

Main idea:

1. The attacker trains shadow models (one per output class of the target model) using 

shadow datasets 𝐷𝑠ℎ𝑎𝑑𝑜𝑤 = {𝒙𝑠ℎ𝑎𝑑𝑜𝑤,𝑖 , 𝒚𝑠ℎ𝑎𝑑𝑜𝑤,𝑖}𝑖=1
𝑛 , that are of the same format 

and distribution as the target dataset. 

2. After training the shadow models, the adversary constructs an attack dataset 

𝐷𝑎𝑡𝑡𝑎𝑐𝑘 = {𝑓𝑖(𝑥𝑠ℎ𝑎𝑑𝑜𝑤,𝑖), 𝑦𝑠ℎ𝑎𝑑𝑜𝑤,𝑖}𝑖=1
𝑛 , where 𝑓𝑖 is the respective shadow model. 

3. The attack dataset is used to train the meta-model, which essentially performs 

inference based on the outputs of the shadow models.

4. The trained meta-model is used for testing using the outputs of the target model.
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Our results show that learning how to infer membership 

in shadow models’ training datasets (for which we know 

the ground truth and can easily compute the cost 

function during supervised training) produces an attack 

model that successfully infers membership in the target 

model’s training dataset, too.



Shadow Models (2/2)
In more detail:

1. For all records in the training dataset of a shadow model, the model is queried and obtain the output. These output vectors are labeled “in” and 

added to the attack model’s training dataset. 

2. The shadow model is also queried with a test dataset disjoint from its training dataset. The outputs on this set are labeled “out” and also added to 

the attack model’s training dataset. 

3. Having constructed a dataset that reflects the black-box behavior of the shadow models on their training and test datasets, we train a collection of 

ctarget attack models, one per each output class of the target model.
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Membership Inference Attacks

Membership inference tries to determine whether an 

input sample x was used as part of the training set D.

• Only assumes knowledge of the model’s output prediction vector (typically a black-box attack)

• Targets supervised machine learning models (and generative models such as GANs and VAEs)

• White-box: if attacker has access to the model parameters and gradients, then this allows for more 

accurate membership inference determination. 

Implementation:

• The meta-model is trained to recognize patterns in the prediction vector output of the target model.

Defense:

• Differential Privacy. if two databases differ only by one record and are used by the same algorithm (or 

mechanism), the output of that algorithm should be similar. Differential privacy offers a trade-off between 

privacy protection and utility or model accuracy. 

• Regularization techniques. Regulation techniques aim to reduce overfitting and increase model 

generalization performance. 

• Prediction vector tampering. As many models assume access to the prediction vector during inference, 

one can restrict the output to the top k classes or predictions of a model. 
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Reconstruction Attacks

Reconstruction attacks try to recreate one or more training 

samples and/or their respective training labels.

• Also referred to as attribute inference or model inversion: given output labels and partial knowledge of 

some features, the attacker tries to recover sensitive features or the full data sample. 

Two types of such attacks:

• Create an actual reconstruction of the data;

• Create class representatives or probable values of sensitive features that do not necessarily belong 

to the training dataset (e.g., faces of a person). 

Implementation:

• Assumes that the adversary has access to the model 𝑓, the priors of the sensitive and non-sensitive 

features, and the output of the model for a specific input 𝑥. 

• The attack is based on estimating the values of sensitive features, given the values of non-sensitive 

features and the output label. 

• This method uses a maximum a posteriori (MAP) estimate of the attribute that maximizes the probability 

of observing the known parameters.

Defense:

• Reconstruction attacks often require access to the loss gradients during training. 

• Most of the defences against reconstruction attacks propose techniques that affect the information 

retrieved from these gradients. 
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Property Inference Attacks

Property inference is the ability to extract dataset properties which were not explicitly 
encoded as features or were not correlated to the learning task.

Property inference aims to extract information that:

• Was learned from the model unintentionally – even well generalized models may learn properties 
that are relevant to the whole input data distribution and sometimes this is unavoidable or even 
necessary for the learning process.

• May be used to gain insights about the training dataset.

Examples:

• Extraction of information about the ratio of women and men in a patient dataset, when this 
information was not an encoded attribute or a label of the dataset. 

• Neural network that performs gender classification and can be used to infer if people in the 
training dataset wear glasses or not. 

Property inference target either:

• Dataset-wide properties 

• Emergence of properties within a batch of data (on the collaborative training of a model).
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Model Extraction Attacks

Model extraction is a class of black-box attacks where the adversary tries to extract 

information and potentially fully reconstruct a model by creating a substitute model 𝑓’ 

that behaves very similarly to the model under attack 𝑓.

Two types of model extraction attacks:

• Task accuracy extraction

• Create models that match the accuracy of target model 𝑓 in a test set that is drawn from the input data 

distribution and related to the learning task. 

• The adversary is interested in creating a substitute that learns the same task as the target model equally 

well.

• Fidelity extraction

• Create a substitute model 𝑓’ that matches 𝑓 at a set of input points that are not necessarily related to 

the learning task.

• The adversary aims to create a substitute that replicates the decision boundary of 𝑓 as faithfully as 

possible. 

• In both cases, it is assumed that the adversary wants to use as few queries as possible.

• Knowledge of the target model architecture is not strictly necessary, if the adversary’s substitute model of 

same or higher complexity than model under attack.

• Some works focus on recovering information from the target model, e.g., hyper-parameters in the objective 

function; in neural networks: activation types, optimisation algorithm, number of layers, etc.
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An Example of Model Inversion Attacks

30/01/2022 19

M. Fredrikson, S. Jha, and T. 
Ristenpart, ‘Model Inversion 

Attacks that Exploit Confidence 
Information and Basic 
Countermeasures’, in 

Proceedings of the 22nd ACM 
SIGSAC Conference on 

Computer and Communications 
Security, Denver Colorado USA, 
Oct. 2015, pp. 1322–1333. doi: 

10.1145/2810103.2813677.



Overview of Privacy Attacks
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Selected Privacy-Preserving Techniques

1. Ensemble of Teacher Models

2. Differential Privacy

3. Distributed Training

4. Training over Encrypted Data

5. Trusted Execution
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Ensemble of 
Teacher Models
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1. Ensemble of Teacher Models

Motivation and Proposal

• Models may inadvertently or implicitly store some of its training data; careful analysis of the model may reveal sensitive data.

• Private Aggregation of Teacher Ensembles (PATE): approach to providing strong privacy guarantees for training data

How does it work?

• PATE combines, in a black-box fashion, multiple models trained with disjoint datasets (e.g., records of different subsets of users). 

• As the models rely directly on sensitive data, their are not published, but instead used as “teachers” for a “student” model.

• The student learns to predict an output chosen by noisy voting among all of the teachers, and cannot directly access an 

individual teacher or the underlying data or parameters. 
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1. Ensemble of Teacher Models

Properties and Applicability

• The student’s privacy properties can be understood both intuitively (since no single teacher and thus no single dataset 

dictates the student’s training) and formally, in terms of differential privacy. 

• These properties hold even if an adversary can not only query the student but also inspect its internal workings. 

• Compared with previous work, the approach imposes only weak assumptions on how teachers are trained: it applies to 

any model, including non-convex models like DNNs. 
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Differential Privacy
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2. Differential Privacy

Differential privacy: constitutes a strong standard for privacy guarantees for algorithms on aggregate databases. 

• It is defined in terms of the application-specific concept of adjacent databases. 

• Consider each training dataset is a set of image-label pairs: two of these sets are adjacent if they differ in a single entry, i.e., if 

one image-label pair is present in one set and absent in the other. 

• Definition. A randomized mechanism M : D → R with domain D and range R satisfies (ε, δ)-differential privacy if for any two 

adjacent inputs d, d0 ∈ D and for any subset of outputs S ⊆ R it holds that

Adding Noise

• A common paradigm for approximating a deterministic real-valued function f : D→ R with a differentially private mechanism is 

via additive noise calibrated to f's sensitivity Sf , which is defined as the maximum of the absolute distance |f(d) - f(d’)| where d

and d’ are adjacent inputs. 

• Consider the Gaussian noise mechanism defined by 

• A single application of the Gaussian mechanism to function f of sensitivity Sf satisfies 𝜀, 𝛿 -differential privacy if
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Differential privacy has several properties that make it particularly 
useful in applications such as ours: 

Pr 𝑀 𝑑 ∈ 𝑆 ≤ 𝑒𝜀 Pr 𝑀 𝑑′ ∈ 𝑆 + 𝛿

𝑀 𝑑 ≜ 𝑓 𝑑 + 𝑁(0, 𝑆𝑓
2𝜎2)

𝛿 ≥
4

5
exp(− 𝜎𝜀 2/2) and           𝜀 > 1



2. Differential Privacy

Privacy Accountant

• Differential privacy for repeated applications of additive noise mechanisms follows from composition theorems.

• The task of keeping track of the accumulated privacy loss in the course of execution of a composite mechanism, and enforcing 

the applicable privacy policy, can be performed by the privacy accountant.

Differentially Private Stochastic Gradient Descent Algorithm

• Method for training a model with parameters by minimizing empirical 

loss function ℒ(𝜃). 

• At each step of the SGD:

1. compute the gradient ∇𝜃ℒ(𝜃, 𝑥𝑖) for a random subset of examples; 

2. clip the ℓ2 norm of each gradient, 

3. compute the average, 

4. add noise in order to protect privacy, 

5. take a step in the opposite direction of this average noisy gradient.

6. compute privacy loss of the mechanism (based on the information 

maintained by the privacy accountant).
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3. Distributed Learning

• Recall the fundamentals of distributed or federated learning

1. Nodes train with local data and produce model updates

2. Model updates are leveraged to train a global model

3. Nodes download globally-improved models or parameters

Distributed/federated learning offers an inherent level of 

privacy, as local data does not leave the respective node

• The work of [Shokri15] leverages and applies this architecture to enable 

multiple parties to jointly learn an accurate neural network model for a given 

objective, without sharing their input datasets. 

• The training of neural networks relies to a great extent on Gradient Descent; 

the authors propose Selective Stochastic Gradient Descent (SSGD).

• The main intuition behind selective parameter update is that during SGD, 

some parameters contribute much more to the neural network’s objective 

function and thus undergo much bigger updates during a given iteration of 

training.
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4. Classification over Encrypted Data

• Computations can be performed over encrypted data – Homomorphic 

• Authors [Bost2015] design and present three classifiers that satisfy this privacy constraint: 

• Hyperplane decision | Naïve Bayes | Decision trees

• The authors define a library of building blocks with which the classifiers are implemented:

1. Comparison with unencrypted inputs

2. Comparison with encrypted inputs

3. Reversed comparison over encrypted data

4. Negative integers comparison and sign 
determination

5. argmax over encrypted data

6. Computing dot products

7. Dealing with floating point numbers

• The authors then describe how to implement the 3 classifiers above with the building blocks
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4. Classification over Encrypted Data
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Argmax: an operation that finds the argument that 

gives the maximum value from a target function.

• Private hyperplane decision

• This classifier computes Argmax

• Example of a building block: argmax

• Computation count:

• k - 1 encrypted comparisons of L bits integers;

• 7(k - 1) homomorphic operations (refreshes, 
multiplications, subtractions);

• k - 1 roundtrips to the comparison protocol

Protocol for implementing private hyperplane decision



4. Classification over Encrypted Data
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Argmax: an operation that finds the argument that 

gives the maximum value from a target function.

Protocol for implementing argmax, a building block 
for classifiers, over encrypted data

• Private hyperplane decision

• This classifier computes Argmax

• Example of a building block: argmax

• Computation count:

• k - 1 encrypted comparisons of L bits integers;

• 7(k - 1) homomorphic operations (refreshes, 
multiplications, subtractions);

• k - 1 roundtrips to the comparison protocol



4. Classification over Encrypted Data

• Secure Naïve Bayes classifier

• Also based on argmax 

• Private decision trees

• Decision trees can be described by polynomials
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P(b1, b2, b3, b4, c1, … , c5) = 

b1 (b3 · (b4 · c5 + (1 - b4) · c4) + (1 - b3) · c3) + 

(1 - b1) (b2 · c2 + (1 - b2) · c1)

Protocol for implementing private naïve Bayes

Protocol for implementing private decision trees
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5. Trusted Execution

• Machine learning as a service (MLaaS)

1. The service provider is free to choose the type of the model to train, how 

to configure and train it, and what transformations, if any, to apply to the 

inputs into the model. 

These choices can adaptively depend on the user’s data and ML task. 

2. The user obtains API access to the trained model but no other information 

about it. 

• Intel Software Guard Extensions (SGX) provide enclaves. Code in an enclave 

can safely operate on secret data without fear of unintentional disclosure to 

the platform.

• Chiron is a privacy-preserving architecture for MLaaS:

• Chiron conceals the training data from the service operator:

1. Service provider provides enclaves to user.

2. User establishes secure communication channels with enclaves to 

transfer data directly. 

• Chiron reveals neither the training algorithm nor the model structure to 

the user, providing only black-box access to the trained model.
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Training enclave architecture. 

1) Untrusted service provider code examines data, 

generates model spec and passes it to the ML toolchain. 

2) ML toolchain uses the spec to generate model-

training code. 

3) Service provider code transforms data and breaks it 

into batches for training.

4) Model-training code is invoked for each batch, 

updating the model.



5. Trusted Execution

Trusted vs. Untrusted code - Sandbox

• To enforce data confidentiality while allowing the provider to select, 

configure, and train a model any way they want, Chiron employs a Ryoan

sandbox (itself based on the hardware-protected enclave).

• An enclave alone is insufficient because it only protects trusted code 

executing on an untrusted platform.

• Code can only be trusted if it is public and thus can be checked by users.

• In Chiron, however, the ML service provider’s code is untrusted, thus users 

must be assured that this code is not stealing their data even though they 

cannot inspect it. 

Sandbox (Ryoan)

• Ryoan [41] enables service providers to keep proprietary code secret while 

simultaneously ensuring users that the confined code cannot leak their data.

• Instead of asking users to trust the provider’s code, Ryoan asks them to trust 

the sandbox that confines this code. 

• Users can audit Ryoan to gain confidence in its correctness.
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Thank You
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