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In ML Contexts
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N. Papernot, P. McDaniel, A. Sinha, and M.
G O a | S a n d Ta r et Sta e Wellman, ‘Towards the Science of Security and
g g Privacy in Machine Learning’, arXiv:1611.03814

[cs], Nov. 2016, Accessed: Aug. 04, 2021. [Online].

Goal of attacks
* Confidentiality and Privacy

* Such attacks attempt to extract information about the model or training data.
* When the model itself represents intellectual property, it requires that the model and its parameters be
confidential.
* Integrity and Availability
* Here the goal is to induce model behavior as chosen by the adversary.
* Attacks attempting to control model outputs are at the heart of integrity attacks — the integrity of the

inference process is undermined.

Stage Targeted by Attacker

* Attacks at Inference Time
» Attacker causes the model to produce adversary-selected (incorrect) outputs

» Attackers collect evidence about the model characteristics (reconnaissance).
e Attacks at Training Time
* Attacker attempts to learn, influence or corrupt the model itself.
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. N. Papernot, P. McDaniel, A. Sinha, and M.
Well , T ds the Sci fsS i d
Attacks at Inference Time Welmar, Tawatis he sclencs ofsecurty and

[cs], Nov. 2016, Accessed: Aug. 04, 2021. [Online].

* Goals of attacks at Inference Time:
» Attacker causes the model to produce adversary-selected (incorrect) outputs;

» Attackers collect evidence about the model characteristics (reconnaissance).
* Attacks at inference time —exploratory attacks — do not tamper with the targeted model.

* Inference phase attacks can be classified depending on the attacker knowledge:

* White box attacks: the adversary has some information about the model or its original training data, e.g., ML

algorithm, model parameters, network structure, or summary, partial, or full training data.

* Black box attacks: assume no knowledge about the model.

Pipeline (weaker)
4 Model black box

Inference » Architecture  white box
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N. Papernot, P. McDaniel, A. Sinha, and M.

Atta C kS at Tra i n i n g Ti m e Wellman, ‘Towards the Science of Security and

Privacy in Machine Learning’, arXiv:1611.03814
[cs], Nov. 2016, Accessed: Aug. 04, 2021. [Online].

e Attacks on training attempt to learn, influence or corrupt the model itself.

* Simplest attack is accessing a summary, partial or all of the training data.

* Depending on the quality and volume of training data, the adversary can create a substitute model to mount attacks.

* Note that these attacks are offline attempts at model reconnaissance, and thus may be used to undermine privacy.

* There are two broad attack strategies for altering the model.

* Alter the training data: either by inserting adversarial inputs into the existing training data (injection) or altering the
training data directly (modification). In the case of reinforcement learning, the adversary may modify the environment
in which the agent is evolving.

* Model corruption: the adversaries can tamper with the learning algorithm. Any adversary that can alter the learning

logic (and thus controls the model itself) is very powerful and difficult to defend against.
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N. Papernot, P. McDaniel, A. Sinha, and M.
Att a C k S u rfa C e Wellman, ‘Towards the Science of Security and
Privacy in Machine Learning’, arXiv:1611.03814

[cs], Nov. 2016, Accessed: Aug. 04, 2021. [Online].
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Privacy Threat Model

M. Rigaki and S. Garcia, ‘A Survey of Privacy
Attacks in Machine Learning’, arXiv:2007.07646
[cs], Apr. 2021, Accessed: Aug. 06, 2021. [Online].
Available: http://arxiv.org/abs/2007.07646
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input data for inference. If the model owner allows, they

may have access to the model itself.
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Distributed Learning Scenario
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M. Rigaki and S. Garcia, ‘A Survey of Privacy
Attacks in Machine Learning’, arXiv:2007.07646
[cs], Apr. 2021, Accessed: Aug. 06, 2021. [Online].
Available: http://arxiv.org/abs/2007.07646
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Taxonomy of Privacy Attacks

Types of attack

* Membership Inference Attacks: Membership inference tries to
determine whether an input sample x was used as part of the
training set D.

* Reconstruction Attacks: Reconstruction attacks try to recreate
one or more training samples and/or their respective training
labels.

* Property Inference Attacks: The ability to extract dataset
properties which were not explicitly encoded as features or were
not correlated to the learning task, is called property inference.

* Model Extraction Attacks: Model extraction is a class of black-box
attacks where the adversary tries to extract information and
potentially fully reconstruct a model by creating a substitute
model f” that behaves very similarly to the model under attack f.

M. Rigaki and S. Garcia, ‘A Survey of Privacy
Attacks in Machine Learning’, arXiv:2007.07646
[cs], Apr. 2021, Accessed: Aug. 06, 2021. [Online].
Available: http://arxiv.org/abs/2007.07646
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Shadow Models (1/2)

* Some supervised learning attacks use shadow models and meta-models to infer

membership from target datasets / target models.

* The main intuition behind such attacks is that models behave differently when they see

data that does not belong to the training dataset.

* The objective of the attacker is to construct an attack model that can recognize such
differences in the target model’s behavior, and use them to distinguish members from
non-members of the target model’s training dataset (based solely on the target model’s

output).
Main idea:

1. The attacker trains shadow models (one per output class of the target model) using
shadow datasets Dgpqa0w = {Xshadow.,i» ¥Yshadow,i}i=1, that are of the same format
and distribution as the target dataset.

2. After training the shadow models, the adversary constructs an attack dataset

_ n . .
Dattack = Ui(Xshadow,i) Yshadow,iti=1, Where f; is the respective shadow model.

3. The attack dataset is used to train the meta-model, which essentially performs
inference based on the outputs of the shadow models.

4. The trained meta-model is used for testing using the outputs of the target model.

30/01/2022

R. Shokri, M. Stronati, C. Song, and V. Shmatikov,
‘Membership Inference Attacks Against Machine
Learning Models’, in 2017 IEEE Symposium on Security
and Privacy (SP), San Jose, CA, USA, May 2017, pp. 3—18.
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Our results show that learning how to infer membership
in shadow models’ training datasets (for which we know
the ground truth and can easily compute the cost
function during supervised training) produces an attack
model that successfully infers membership in the target

model’s training dataset, too.
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R. Shokri, M. Stronati, C. Song, and V. Shmatikov,

S h d I\/I d | 2 2 ‘Membership Inference Attacks Against Machine
a O W O e S Learning Models’, in 2017 IEEE Symposium on Security

and Privacy (SP), San Jose, CA, USA, May 2017, pp. 3—18.

In more detail:

1. Forall records in the training dataset of a shadow model, the model is queried and obtain the output. These output vectors are labeled “in” and
added to the attack model’s training dataset.

2. The shadow model is also queried with a test dataset disjoint from its training dataset. The outputs on this set are labeled “out” and also added to
the attack model’s training dataset.

3. Having constructed a dataset that reflects the black-box behavior of the shadow models on their training and test datasets, we train a collection of

Crarget attack models, one per each output class of the target model.

|- - - - -~ - - —--—--—--— . re oS- - - - - - - - - - - |
|

' (data record, class label) | predict(data) | (prediction, class label, “in” / “out”)

___________________ J L Sy

@v Training Set 1 Shadow Model 1 “in” Prediction Set 1

Shadow Test Set 1 @Predicﬁo@

—
Shadow Training Set k Shadow Model k ﬁ Prediction Set k train()
@dow Test Set k @Predictim@ \

Attack Training Set [ Attack Model ]

-
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R. Shokri, M. Stronati, C. Song, and V. Shmatikov,

S h d I\/I d | 2 2 ‘Membership Inference Attacks Against Machine
a O W O e S Learning Models’, in 2017 IEEE Symposium on Security

and Privacy (SP), San Jose, CA, USA, May 2017, pp. 3—18.

In more detail:

1. Forall records in the training dataset of a shadow model, the model is queried and obtain the output. These output vectors are labeled “in” and
added to the attack model’s training dataset.

2. The shadow model is also queried with a test dataset disjoint from its training dataset. The outputs on this set are labeled “out” and also added to
the attack model’s training dataset.

3. Having constructed a dataset that reflects the black-box behavior of the shadow models on their training and test datasets, we train a collection of

Crarget attack models, one per each output class of the target model.

[ mmmmmmmm—mm e — oo _predict(data) (
' (data record, class label) >L Target Model
1
label
prediction

[ Attack Model }%

data € training set ?
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M. Rigaki and S. Garcia, ‘A Survey of Privacy

. Attacks in Machine L ing’, arXiv:2007.07646
Membership Inference Attacks | & o e a o orimel

Available: http://arxiv.org/abs/2007.07646

Membership inference tries to determine whether an
input sample x was used as part of the training set D.

* Only assumes knowledge of the model’s output prediction vector (typically a black-box attack) ] ,
Train Dataset

* Targets supervised machine learning models (and generative models such as GANs and VAEs)
* White-box: if attacker has access to the model parameters and gradients, then this allows for more

accurate membership inference determination.

X

Implementation:

* The meta-model is trained to recognize patterns in the prediction vector output of the target model.

Defense:

* Differential Privacy. if two databases differ only by one record and are used by the same algorithm (or il
mechanism), the output of that algorithm should be similar. Differential privacy offers a trade-off between X
privacy protection and utility or model accuracy. 7y

* Regularization techniques. Regulation techniques aim to reduce overfitting and increase model
generalization performance.

* Prediction vector tampering. As many models assume access to the prediction vector during inference,

one can restrict the output to the top k classes or predictions of a model.
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M. Rigaki and S. Garcia, ‘A Survey of Privacy

. Attacks in Machine L ing’, arXiv:2007.07646
Reconstruction Attacks e L oot

Available: http://arxiv.org/abs/2007.07646

Reconstruction attacks try to recreate one or more training
samples and/or their respective training labels.

w2

Train Dataset’

* Also referred to as attribute inference or model inversion: given output labels and partial knowledge of
some features, the attacker tries to recover sensitive features or the full data sample.

Two types of such attacks:

* Create an actual reconstruction of the data;

* Create class representatives or probable values of sensitive features that do not necessarily belong
to the training dataset (e.g., faces of a person).

Implementation:

* Assumes that the adversary has access to the model f, the priors of the sensitive and non-sensitive
features, and the output of the model for a specific input x.

* The attack is based on estimating the values of sensitive features, given the values of non-sensitive
features and the output label.

* This method uses a maximum a posteriori (MAP) estimate of the attribute that maximizes the probability
of observing the known parameters.

Y ¥ =y
Defense: ??r 1'17 \aﬁﬁ:

* Reconstruction attacks often require access to the loss gradients during training. — :
* Most of the defences against reconstruction attacks propose techniques that affect the information

retrieved from these gradients.
30/01/2022 [MPORTO 16

A\CULDADE DE ENGE|
UNIVERSIDADE DO PORTO




M. Rigaki and S. Garcia, ‘A Survey of Privacy

Property Inference Attacks ) o B A i s SO

Available: http://arxiv.org/abs/2007.07646

Property inference is the ability to extract dataset properties which were not explicitly
encoded as features or were not correlated to the learning task.

w2

* Was learned from the model unintentionally — even well generalized models may learn properties Train Dataset’

Property inference aims to extract information that:

that are relevant to the whole input data distribution and sometimes this is unavoidable or even
necessary for the learning process.

* May be used to gain insights about the training dataset. u,ao, ..

Examples:

* Extraction of information about the ratio of women and men in a patient dataset, when this
information was not an encoded attribute or a label of the dataset.

* Neural network that performs gender classification and can be used to infer if people in the
training dataset wear glasses or not.

Property inference target either:

* Dataset-wide properties

* Emergence of properties within a batch of data (on the collaborative training of a model).

30/01/2022 [MPORTO 17
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Model Extraction Attacks

M. Rigaki and S. Garcia, ‘A Survey of Privacy
Attacks in Machine Learning’, arXiv:2007.07646
[cs], Apr. 2021, Accessed: Aug. 06, 2021. [Online].
Available: http://arxiv.org/abs/2007.07646

Model extraction is a class of black-box attacks where the adversary tries to extract
information and potentially fully reconstruct a model by creating a substitute model /°
that behaves very similarly to the model under attack /.

Two types of model extraction attacks:

* Task accuracy extraction
* Create models that match the accuracy of target model f in a test set that is drawn from the input data
distribution and related to the learning task.
* The adversary is interested in creating a substitute that learns the same task as the target model equally
well.
* Fidelity extraction
* Create a substitute model f’ that matches f at a set of input points that are not necessarily related to
the learning task.
* The adversary aims to create a substitute that replicates the decision boundary of f as faithfully as
possible.

* In both cases, it is assumed that the adversary wants to use as few queries as possible.

* Knowledge of the target model architecture is not strictly necessary, if the adversary’s substitute model of
same or higher complexity than model under attack.

* Some works focus on recovering information from the target model, e.g., hyper-parameters in the objective
function; in neural networks: activation types, optimisation algorithm, number of layers, etc.
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An Example of Model Inversion Attacks

30/01/2022

Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.
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M. Fredrikson, S. Jha, and T.
Ristenpart, ‘Model Inversion
Attacks that Exploit Confidence
Information and Basic
Countermeasures’, in
Proceedings of the 22nd ACM
SIGSAC Conference on
Computer and Communications
Security, Denver Colorado USA,
Oct. 2015, pp. 1322-1333. doi:
10.1145/2810103.2813677.
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Overview of Privacy Attacks

M. Rigaki and S. Garcia, ‘A Survey of Privacy
Attacks in Machine Learning’, arXiv:2007.07646
[cs], Apr. 2021, Accessed: Aug. 06, 2021. [Online].
Available: http://arxiv.org/abs/2007.07646
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Selected Privacy-Preserving Technigues

1. Ensemble of Teacher Models
2. Differential Privacy
3. Distributed Training
4. Training over Encrypted Data

5. Trusted Execution

30/01/2022 [APORTO 22



30/01/2022

EFnsemble of
Teacher Models

B

MIRAI FEUP (versionor

[MPORTO

23



N. Papernot, M. Abadi, U. Erlingsson, .
1 E n S e m b | e Of Te a C h e r I\/I O d e | S Goodfellow, and K. Talwar, ‘Semi-supervised
. Knowledge Transfer for Deep Learning from
Private Training Data’, arXiv:1610.05755 [cs,
stat], Mar. 2017, Accessed: Sep. 19, 2021.

Motivation and Proposal
* Models may inadvertently or implicitly store some of its training data; careful analysis of the model may reveal sensitive data.

* Private Aggregation of Teacher Ensembles (PATE): approach to providing strong privacy guarantees for training data

How does it work?

* PATE combines, in a black-box fashion, multiple models trained with disjoint datasets (e.g., records of different subsets of users).

* Asthe models rely directly on sensitive data, their are not published, but instead used as “teachers” for a “student” model.

* The student learns to predict an output chosen by noisy voting among all of the teachers, and cannot directly access an
individual teacher or the underlying data or parameters.

Not accessible by adversary [ Accessible by adversary

J Datal || Teacher1 \
. /'I Data2 [—P»>  Teacher? |\A I
Sensitive ’ Aggregate .
Student - - Queries
Data é ‘> Dpata3 | Teacher3 |/' Teacher I Q
\ < 4
Predicted Incomplete
‘( e | > Teacher n completion I < Public Data
| —p- Training = re e P Prediction ==+ === = Data feeding |

Figure 1: Overview of the approach: (1) an ensemble of teachers is trained on disjoint subsets of the
30/01/2022 sensitive data, (2) a student model is trained on public data labeled using the ensemble. 24



Semi-supervised Knowledge Transfer for
Deep Learning from Private Training Data

1. Ensemble of Teacher Models

Properties and Applicability

* The student’s privacy properties can be understood both intuitively (since no single teacher and thus no single dataset
dictates the student’s training) and formally, in terms of differential privacy.

* These properties hold even if an adversary can not only query the student but also inspect its internal workings.

* Compared with previous work, the approach imposes only weak assumptions on how teachers are trained: it applies to
any model, including non-convex models like DNNs.
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M. Abadi et al., ‘Deep Learning with Differential Privacy’,
2 D | ffe re nt | a | P r | Va C Proceedings of the 2016 ACM SIGSAC Conference on
. y Computer and Communications Security, pp. 308-318,

Oct. 2016, doi: 10.1145/2976749.2978318.

Differential privacy: constitutes a strong standard for privacy guarantees for algorithms on aggregate databases.
* Itis defined in terms of the application-specific concept of adjacent databases.

* Consider each training dataset is a set of image-label pairs: two of these sets are adjacent if they differ in a single entry, i.e., if
one image-label pair is present in one set and absent in the other.

* Definition. A randomized mechanism M : D - R with domain D and range R satisfies (g, 6)-differential privacy if for any two
adjacent inputs d, dO € D and for any subset of outputs S € R it holds that

Pr[M(d) € S] <efPr[M(d) € S]+ 6

Adding Noise
* A common paradigm for approximating a deterministic real-valued function f: D = R with a differentially private mechanism is
via additive noise calibrated to f's sensitivity S;, which is defined as the maximum of the absolute distance |f(d) - f(d’)| where d

and d’ are adjacent inputs.

* Consider the Gaussian noise mechanism definedby M (d) £ f(d) + N (O, S]?o'z)

* Asingle application of the Gaussian mechanism to function f of sensitivity S; satisfies (g, 6)-differential privacy if
4
5 = Eexp(—(ae)z/Z) and e>1

30/01/2022 [MPORTO 27



2. Differential Privacy

Privacy Accountant

M. Abadi et al., ‘Deep Learning with Differential Privacy’,
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 308-318,
Oct. 2016, doi: 10.1145/2976749.2978318.

» Differential privacy for repeated applications of additive noise mechanisms follows from composition theorems.

* The task of keeping track of the accumulated privacy loss in the course of execution of a composite mechanism, and enforcing
the applicable privacy policy, can be performed by the privacy accountant.

Differentially Private Stochastic Gradient Descent Algorithm

* Method for training a model with parameters by minimizing empirical
loss function L(6).

* At each step of the SGD:

1.

o vk wh

compute the gradient Vo L(8, x;) for a random subset of examples;
clip the £, norm of each gradient,

compute the average,

add noise in order to protect privacy,

take a step in the opposite direction of this average noisy gradient.
compute privacy loss of the mechanism (based on the information

maintained by the privacy accountant).

Pedro Santos — pss@isep.ipp.pt

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {zi,...,zn}, loss function L(f) =
+ 3. L£(0,x;). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C'.

Initialize #y randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € L;, compute g;(x;) + Vo, L(0:, x:)
Clip gradient
g:(x:) < g¢(a:)/ max (1: |Ig¢(;s.ll 2)
Add noise
B — L (X, 8e(w:) + N(0,0°C°T))
Descent
Ori1 + Oy — 84
Output fr and compute the overall privacy cost (&, 6)
using a privacy accounting method.
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R. Shokri and V. Shmatikov, ‘Privacy-Preserving Deep Learning’, in Proceedings of

. . . the 22nd ACM SIGSAC Conference on Computer and Communications Security,
. I St r I u te e a r n I n g Denver Colorado USA, Oct. 2015, pp. 1310-1321. doi: 10.1145/2810103.2813687.

global parameters

T
|nEEEREEEEEREE

* Recall the fundamentals of distributed or federated learning

1. Nodes train with local data and produce model updates

download the upload gradient of CT
2. Model updates are leveraged to train a global model e selectedparameters | )
. parameters global parameters
3. Nodes download globally-improved models or parameters "7 7" oo oo TTT oo
o p——— g -l
i ] 00 ] [ :: :: o H
Distributed/federated learning offers an inherent level of P AP e = =
. . :: elected paral selected gradlents :: :|
privacy, as local data does not leave the respective node e T i
=
* The work of [Shokril5] leverages and applies this architecture to enable | :i
Il _ _ Ceee—— |
multiple parties to jointly learn an accurate neural network model for a given — : | FEEESEEEEsSS ’
parameters and gradients

objective, without sharing their input datasets.

v 1

* The training of neural networks relies to a great extent on Gradient Descent;

the authors propose Selective Stochastic Gradient Descent (SSGD).

* The main intuition behind selective parameter update is that during SGD,
some parameters contribute much more to the neural network’s objective

function and thus undergo much bigger updates during a given iteration of

training. Figure 2: High-level architecture of our deep learning system. An abstract
model of the parameter server, which maintains global values for the pa-
rameters, is depicted at the top.
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4. Classification over Encrypted Data

R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, ‘Machine Learning
Classification over Encrypted Data’, presented at the Network and
Distributed System Security Symposium, San Diego, CA, 2015. doi:
10.14722/ndss.2015.23241.

* Computations can be performed over encrypted data — Homomorphic

* Authors [Bost2015] design and present three classifiers that satisfy this privacy constraint:

* Hyperplane decision |

Naive Bayes |

Decision trees

* The authors define a library of building blocks with which the classifiers are implemented:

1.

2
3.
4

Comparison with unencrypted inputs

Comparison with encrypted inputs

_ ype Input A Input B Output A | Output B
Reversed comparison over encrypted data 1 PRy, PKon. SKp.SKam b | [a < 0 =
Negative integers comparison and sign 2 | PKp,SKgg, [a], [0] | SKp.,PKgr - [a <)
determination 3 PKp, SKonr, [a]. [6] | SKp.PKor a<b [a < b]
4 | PKp,PKop. [a]. 0] | SKpSKon | la<b] | -
argmax over encrypted data 5 PKp, PRomfal. [0] | SKp.SKox A< 0<b

Computing dot products
Dealing with floating point numbers

* The authors then describe how to implement the 3 classifiers above with the building blocks

30/01/2022

(B PORT(

| \
FFFFFFFFFFFFFFFFFFF
UNIVERSIDADE DO PORTO

32



* Private hyperplane decision
* This classifier computes Argmax

k* = argmax(w;, x)
1€ k]

Argmax: an operation that finds the argument that

gives the maximum value from a target function.

* Example of a building block: argmax

* Computation count:
* k-1 encrypted comparisons of L bits integers;

* 7(k - 1) homomorphic operations (refreshes,
multiplications, subtractions);

* k-1 roundtrips to the comparison protocol

Pedro Santos — pss@isep.ipp.pt

R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, ‘Machine Learning
Classification over Encrypted Data’, presented at the Network and

4 . C | a S S Ifl Cat | O n Ove r E n C ry pte d D a ta Distributed System Security Symposium, San Diego, CA, 2015. doi:

10.14722/ndss.2015.23241.

Protocol 4 Private hyperplane decision
Client’s (C) Input: z = (zq,. .., xq4) € Z%, public keys PKp and PKgr
Server’s (S) Input: {w;}*_, where ¥i € [k], w; € Z". secrel keys SKp and SKor

Client’s Output: argmax{w;, )
i€[k]

I: fori=1tokdo
2 C and S run Protocol 3 for private dot product where C 1s party A with input z and S is party B with input w;.
C gets ;] the result of the protocol.

hed

By ¢ {z,w;)
4: end for
5. Cand S run Protocol | for argmax where C is the A, and S the B. and [v1]. ..., [vx] the input ciphertexts. C gets
the result iy of the protocol.

> ig ¢ argmax v;
i€[k]
6: Coutputs g

Protocol for implementing private hyperplane decision
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R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, ‘Machine Learning
Classification over Encrypted Data’, presented at the Network and

4 . C | a S S Ifl Cat | O n Ove r E n C ry pte d D a ta Distributed System Security Symposium, San Diego, CA, 2015. doi:

10.14722/ndss.2015.23241.

Protocol 1 argmax over encrypted data

. o o (]
Prlvate hyperpla ne dECISlon Input A: k encrypted integers ([a1], ..., [ax]). the bit length [ of the a;. and public keys PKg g and PKp

. . Input B: Secret keys SKp and SKgg. the bit length {
* This classifier computes Argmax Output A: argmax, i

1: A: chooses a random permutation 7 over {1,. .., k}

* .
k™ = argmax(fw@, 35') 2 A [max] = [az(y)]

’I,G[k] 3 Bim+ 1
4: fori =2to k do

5 Using the comparison protocol (Sec. <. 1.5), B gets the bit b; = (max < a.(;))
. . e . M oare . a. A+
Argmax: an operation that finds the argument that 6 Apicks two random integers ri, s; < (0,2"7) N Z ,
7: A: [ml] + [max] - [r;] > m; = max + r;
. . . 8: A: [ai] + [ax] - [s:] Daj = ar;) + Si
gives the maximum value from a target function. o A sends [m!] and [a/] (o B
10 if b; is true then
11: B:m i
12: B: [v;] + Refresh[a!] > v; = ak
o 13: else

* Example of a building block: argmax 14 B: [u:] < Refresh[m/] b = m)

15: end if

16: B sends to A [v;]

17: B sends to A [b;]

18 A:[max] « [u] - (g7 - [ba])" - [Bs] S

19: DmaXI’L‘?"ﬁ*(bi*l}'?'f'*bi‘ti
20: end for

21: Bsends mto A

22: A outputs 71 (m)

* Computation count:
* k-1 encrypted comparisons of L bits integers;

* 7(k - 1) homomorphic operations (refreshes,
multiplications, subtractions); Protocol for implementing argmax, a building block

* k - 1 roundtrips to the comparison protocol for classifiers, over encrypted data

Pedro Santos — pss@isep.ipp.pt [MPORTO 34

FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO



* Secure Naive Bayes classifier

e Also based on argmax

E* = argmax logp(C = ¢;| X = z)
ic[k]

d
= argmax { logp(C = ¢;) + Zlogp(Xj =z;|C = ¢;)

i€ (k] j=1

* Private decision trees

* Decision trees can be described by polynomials

P(bl, b2,b3, b4,C1, ...,CS) = @
b1 (b3 (b4 - c5+ (1-b4)-c4) + (1-b3) - c3) +
(1-b1) (b2 c2+ (1-b2) - cl)

30/01/2022

R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, ‘Machine Learning
Classification over Encrypted Data’, presented at the Network and

4 . C | a S S Ifl Cat | O n Ove r E n C ry pte d D a ta Distributed System Security Symposium, San Diego, CA, 2015. doi:

10.14722/ndss.2015.23241.

Protocol 5 Naive Bayes Classifier

Client’s (C) Input: = = (z1,...,x4) € Z%. public key PKp, secret key SKor

Server’s (S) Input: The secret key SKp. public key PKgp and probability tables {log p(C' = ¢;)}, <, and
{{bgp(Xﬁ' =v|C = Ci)}“eDj}lﬁde,lSiSk

Client’s Output: iy such that p(z, ¢;, ) 1s maximum

1: The server prepares the tables P and {T; ; }1<i<#.1<;j<a and encrypts their entries using Paillier.
2: The server sends [P] and {[7; ;]}; ; to the client.

3 Forall 1 < i < k. the client computes [p;] = [P(i)] HS=1[[EJ-(:C}-)]}.

4: The client runs the argmax protocol (Protocol |) with the server and gets ip = argmax; p;

5: C outputs ig

Protocol for implementing private naive Bayes

Protocol 6 Decision Tree Classifier

Client’s (C) Input: = = (x,...,z,) € Z", secret keys SKogr. SKppg
Server’s (S) Input: The public keys PKg g, PKp g g, the model as a decision tree, including the n thresholds {uw; }1;.
Client’s Output: The value of the leaf of the decision tree associated with the inputs by, .. ., by.

1: S produces an n-variate polynomial P as described in section 7. 1.

2: S and C interact in the comparison protocol, so that S obtains [b;] for ¢ € [1...n] by comparing w; to the
corresponding attribute of .

3: Using Protocol 2. S changes the encryption from QR to FHE and obtains [[b:1], ..., [[b=]]-

4 To evaluate P, S encrypts the bits of each category ¢; using FHE and SIMD slots, obtaining

Meirs- o eall. S uses SIMD slots to compute homomorphically [[P(by,....b,, C10:--- . Cnleaveso)s - - - »
P(bi,...,bn,c1i=1, ..., Cnleavesi—1)]]- It rerandomizes the resulting ciphertext using FHE’s rerandomization
function, and sends the result to the client.

5: C decrypts the result as the bit vector (vp, ..., v—1) and outputs Ei;é v; - 2%

Protocol for implementing private decision trees
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T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel,
5 Tr u Ste d E Xe C u t I O n ‘Chiron: Privacy-preserving Machine Learning as a Service’,
. arXiv:1803.05961 [cs], Mar. 2018, Accessed: Sep. 19, 2021.

[Online]. Available: http://arxiv.org/abs/1803.05961

* Machine learning as a service (MLaa$) Model Desien : Model Training
1. The service provider is free to choose the type of the model to train, how |Untrusted & Confined n
to configure and train it, and what transformations, if any, to apply to the | User Training Data
inputs into the model. Vaet_data - Vget data
) ) ) Model Design Code - Data Transformations
These choices can adaptively depend on the user’s data and ML task. o T =
2. The user obtains APl access to the trained model but no other information Spec Batch1 Batchn
Trusted # - .
: uild model train model
about it. O" =
ML Toolchain [— ¥ Training Code
* Intel Software Guard Extensions (SGX) provide enclaves. Code in an enclave : v
can safely operate on secret data without fear of unintentional disclosure to - (ML Model |
the platform. Training enclave architecture.

 Chiron is a privacy-preserving architecture for MLaaS: 1) Untrusted service provider code examines data,

generates model spec and passes it to the ML toolchain.

2) ML toolchain uses the spec to generate model-

1. Service provider provides enclaves to user. .
training code.

2. User establishes secure communication channels with enclaves to 3) Service provider code transforms data and breaks it

transfer data directly. into batches for training.

4) Model-training code is invoked for each batch,
updating the model.
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5. Trusted Execution

T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel,
‘Chiron: Privacy-preserving Machine Learning as a Service’,
arXiv:1803.05961 [cs], Mar. 2018, Accessed: Sep. 19, 2021.

[Online]. Available: http://arxiv.org/abs/1803.05961

Model Design

Model Training

* To enforce data confidentiality while allowing the provider to select, Untrusted & Confined m

configure, and train a model any way they want, Chiron employs a Ryoan L

sandbox (itself based on the hardware-protected enclave).

User Training Data
+qet data u +get data
Model Design Code | ™® Data Transformations

* An enclave alone is insufficient because it only protects trusted code €@  Vodel ) Data
executing on an untrusted platform. Trusted —5% Dt Batchn
build model ® train model
L2 2= -
. . L . ML Toolchain [— % Training Code
* In Chiron, however, the ML service provider’s code is untrusted, thus users n ¥
|
must be assured that this code is not stealing their data even though they - (ML Model ]
cannot inspect it.
* Ryoan [41] enables service providers to keep proprietary code secret while
simultaneously ensuring users that the confined code cannot leak their data.
* Instead of asking users to trust the provider’s code, Ryoan asks them to trust
the sandbox that confines this code.
* Users can audit Ryoan to gain confidence in its correctness.
38
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