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A B S T R A C T

Unintentional associations of mobile devices to on-board WiFi access points (APs) can affect the outdoor Internet
experience of mobile device users, as the on-going cellular connection is broken and a short-lived WiFi con-
nection is initiated. This disruption of the user experience can be avoided if the on-board AP learns whether the
user device is inside or outside the bus and decides to accept its connection request or not. In this article, we
present a classifier-based mechanism for on-board APs that accepts or denies user device associations based on a
classification of the relative position of the device. An analysis of the problem in terms of connection duration
and RSSI is presented to motivate the selected approach. We then describe a classifier to identify the user relative
position trained on features extracted from contextual information. The classifier was trained with a large da-
taset of real-world WiFi-usage and mobility patterns of a public bus fleet from Porto, Portugal. The training
procedure indicated bus speed as the most relevant feature, and that the RSSI measured at the on-board AP does
not contribute. Finally, we propose a mechanism that grants or denies connection access to users based on the
classifier output. We discuss how to integrate this mechanism in the AP network stack and evaluate its per-
formance in real-world tests. Our solution can avoid 40% of the associations from users outside of the bus.

1. Introduction

Hotspots with WiFi access points (AP) and a connection to the cloud
(via 3G or DSRC) are becoming common in public transportation fleets
to provide Internet service to passengers. For ease of connection over
multiple occasions, the on-board APs advertise the same Service Set
Identifier (SSID) in all vehicles. In addition, many users of mobile de-
vices tend to leave multiple wireless interfaces active when they are on
the streets, specially WiFi and cellular. In case a user has already con-
nected to the WiFi network of a bus, the network will be memorized by
the user device and connected to every time the device discovers it,
even if sometimes the user is not on the bus. In such cases, the cellular
connection will be broken and a new WiFi connection will be estab-
lished with the on-board AP, that may last for a very short period of
time if the AP becomes out of range. Consequently, the latter connec-
tion is bound to cause a bad experience to the user as seamless Internet
access is disrupted. Additionally, the association process also drains AP
resources into a connection that will be inconsequential, thus poten-
tially deteriorating the overall quality-of-service of the AP. As such, it is
an undesired connection or association. Users to whom such accidental

connections occur are typically also customers of the bus service (as
they need to have used it once to have the network registered on their
device), and higher customer satisfaction can be achieved if customers
do not have their outdoor Internet experience disturbed by occasional
buses passing by.

The undesired connection can be avoided if the on-board AP can
learn whether the user is inside or outside the bus, and use that in-
formation to decide on whether to accept its connection request or not.
There are several strategies to identify the user’s relative position (if the
user is inside or outside), but we seek a solution that is fully contained
in the on-board AP. An alternative approach would be to request user
input or action (e.g., logging in to a captive portal, installing a dedi-
cated app). An AP-side solution has several benefits over this solution:
(i) No human intervention is needed; (ii) the service provider needs not
to rely on costumer awareness to achieve high adoption ratios of the
solution; and (iii) the service provider can control the quality of the
solution by rolling out new versions of the classifier and mechanism.
Other non-AP-only options could pass by installing support hardware
(e.g., Bluetooth beacons) or integrate with the ticket validation system,
which would involve some deployment overhead and/or leave the
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service provider dependent on third parties.
In this paper, we propose a classifier-based scheme to support the

association decision at the on-board AP using available contextual in-
formation. We first describe the problem with field experiments de-
signed to characterize these connections and that motivate the need of a
classifier-based approach. The classifier was trained using a real-world
dataset of mobility and WiFi connection traces collected at buses
equipped with on-board APs and GPS. The automated training showed
that the most relevant contextual information is the instantaneous
speed and speed average over last 10 s. Finally, we also propose a de-
sign for a decision algorithm that incorporates the developed classifier
and discuss some options of its implementation in software and in-
tegration in the network stack. An experimental evaluation of the so-
lution performance with respect to blocking outside users is presented:
The classifier manages to block about 40% of external users at the in-
stant of the first contact. In practice, this means that 40% of outside
users are prevented of engaging in an undesired connection, thus not
having their outdoor Internet experience affected; and that the AP can
avoid 40% of inconsequential connection requests, thus freeing re-
sources for valid connections.

Our contributions are:

• Characterization of undesired connections and the conditions in
which they are likely to happen;

• Development of a classifier for predicting the relative position of the
on-board AP and a user device using real-world datasets;

• Design and implementation of an association decision mechanism in
an open network stack, and real-world experimental performance
evaluation.

The remainder of this article is as follows. In Section 2, we outline
the existing state of the art. A characterization of undesired connections
is discussed in Section 3. The development of a classifier to detect the
relative position of the user is explained in Section 4. The design of a
mechanism to identify relative position and decide on connection ac-
ceptance or refusal is presented in Section 5. The experimental eva-
luation of the mechanism performance is shown in Section 6. Final
remarks and future work are laid out in Section 7.

2. Related work

We review the existing literature on decision schemes for associa-
tion and handover, and solutions for relative position identification.
Recent works on association in vehicular scenarios focus on service to
vehicular users by infrastructural access points. The work of Xie et al.
[1] presents an algorithm to improve long-term service duration by
infrastructural WLANs. The authors of [2] propose a load balancing-
aware scheme to decide association of user devices to heterogeneous
cellular base stations. In [3], an algorithm framework that provides
analytical performance guarantees in scenarios of multi-tier multi-cell
environments is presented. Handover decisions schemes extend asso-
ciation schemes by considering additional criteria such as quality-of-
service and/or logistics of sustaining on-going sessions. Given its close
relation to association and wide body of literature, we review also the
relevant works in this field. A taxonomy of handover decision schemes
can be found in [4], with the proposed categories being RSS-based,
QoS-based, Decision Function, Network Intelligence and Contextual.
Our approach identifies with the later class; and within these, it sits
among the decision mechanism that harness mobility prediction. In [5]
the authors propose a decision scheme for handovers between WiFi and
WiMax networks that takes into account the user’s speed. For high user
speeds, the authors defend that the handovers from WiMax networks to
WiFi should not be easily triggered due to the WiFi base station’s
smaller coverage. The authors of [6] propose a handover decision
scheme between WLAN and WWAN based on user micro-mobility
prediction. In [7], a network selection mechanism for LTE user devices

is presented: it seeks the best network (LTE or WiFi) to support appli-
cation QoS requirements, using external user mobility prediction ser-
vices. Works addressing the scenario of association/handover to in-
vehicle networks typically focus on QoS issues. In [8], a mobility-aware
call admission control (CAC) algorithm is proposed: when a hotspot-
equipped bus stops to let passengers in, WLAN guard channels are re-
served to support handover sessions from users coming in. In [9] a
hybrid interworking scheme is proposed to support seamless vertical
handover of IP sessions for vehicular passengers. We found no proposals
of association or handover decision schemes for our target scenario.

Solutions for learning the relative position or distance between
nodes fall into two classes: those that assume active participation from
both nodes, or those in which a single node infers it. In the first case,
nodes typically share a common communication technology.
WifiHonk [10] is a vehicle-to-pedestrian (V2P) WiFi-based mechanism
to avoid collisions, in which vehicular users advertise their positions via
beacons. The authors of [11] describe an implementation of a DSRC
stack in a smart phone-grade WiFi chip. Both solutions source GPS to
obtain the nodes’ position estimates; if the actual distance between
nodes is close to the GPS receiver’s position error, the computed relative
distance can suffer from a substantial error [12]. Solutions that try to
identify another node’s position (or distance to it) passively are mostly
based on RSSI. RSSI-based methods for localization include lateration
methods, machine learning classification, probabilistic approaches and
statistical supervised learning techniques [13]. For static users, the
work of Krumm and Horvitz [14] tries to infer user motion and location
from WiFi received signal strengths. The authors of [15] use the RSSI of
V2V messages to predict vehicle collisions. The work of Parker and
Valaee [16] proposes a collaborative RSSI-based localization solution.
The use of infrastructural nodes is proposed in [17], in which the au-
thors use RSSI and angle-of-arrival from infrastructural APs to improve
their vehicle’s position estimate. However, the studies of Parameswaran
et al. [18] and Heurtefeux and Valois [19] show that, even if the target
node is static, measured RSSI is not consistent enough through multiple
measurements sessions to support reliable ranging/localization.

The topic of decision schemes for in-vehicle network associations
(or handovers from urban WLAN/WWANs) has not been explored in
detail, to the best of our knowledge. RSS-based localization solutions
are a natural approach to explore, but existing solutions require specific
software and/or hardware. Our solution abstracts from this short-
coming by being designed to operate on the AP side and sourcing
contextual information available to the vehicle. In addition, our pro-
posed scheme protects the QoS of the users that rest outside of the ve-
hicle (an aspect that we have not seen explicitly addressed in litera-
ture), and harnesses a real-world dataset with a large number of users to
develop a generic and universal solution.

3. Undesired connections to on-board access points

We present an introductory analysis to the problem of undesired
connections between user devices and on-board access points (APs).
Our definition of an undesired connection is as follows: a connection
established between a stationary or slow-moving user device (smart
phone) that stands by the road side and an on-board AP that passes by
or is stopped for a short period near the user.

We developed and conducted two experiments to characterize
connections between a user device and on-board APs. The experiments
address the following cases: (i) The user device is by the road-side and
the vehicle passes by; and (ii) the user device enters the vehicle. The
characterization is made over time in terms of: (i) RSSI throughout
connection; and (ii) duration of connection and connection stages
(particularly in the first experiment). In performing these experiments,
we expect to identify metrics and/or process behaviours that may in-
dicate whether a user is outside or not with some degree of certainty.
We detail next the methodology and results of both sets of experiments.
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3.1. Road-side user

We enacted a scenario in which undesired connections are likely to
occur, specifically that of a user standing by the road-side and a vehicle
equipped with an on-board AP. In order to introduce the least varia-
bility to the RSSI samples and connection stages to be measured, the
experiments were made in a simplified scenario, i.e., a personal car was
used instead of bus, we selected a street with little traffic, and there
were few nearby infrastructural WiFi APs.

3.1.1. Methodology
We equipped a car with an access point similar to those used in the

public buses. The access point has an integrated GPS module, and ran
software to collect the user device’s RSSI. We note that the on-board AP
installation in a private car presented differences to the setup in a bus.
In the car, the on-board AP was placed on top of the dashboard,
whereas in buses the APs are installed in a compartment just on top of
the driver. Thus, the two setups enjoyed different heights to the ground
and had different materials surrounding them.

A user device – smart phone running Android OS – was positioned
statically by the road side. In order to ensure that data is always ex-
changed and the RSSI is updated throughout the time, a continuous
ping was executed every second. The following information was re-
corded:

• Timestamp of established connection and connection loss on the
user device;

• Timestamp of the first and last transmitted ping;

• Sets of RSSI samples and GPS coordinates taken simultaneously at a
rate of 1 second.

The experiment was done at night and in a straight street to ensure
similar conditions across measurement sessions. Four tests were con-
ducted at an average speed of 30 km/h on a best-effort basis (traffic
lights and other traffic made it hard to maintain constant speed all the
time). During the test the device was using an old IP address and only
sending a DHCP packet, therefore decreasing connection establishment
time. The time between the last ping received and the instant the user
device considers it no longer has connection to the AP (referred to as
the “No signal but available” state) was computed a posteriori (i.e., there
was no on-line evaluation of rates of responsive pings).

3.1.2. Results
The results were as follows:
1) RSSI throughout connection: Fig. 1 presents the RSSI measured at

the on-board AP as the vehicle passes by the road-side user in the four
runs. We also observe that there is no consistency across runs of RSSI
values and distance between terminals at the instant the connection

starts.
2) Duration of connection and connection stages: In total, the duration

of the connections during the tests lasted from 32 s to 64 s. We observed
that, as the wireless signal starts fading, the connection from the point
of view of the user goes through several stages until full disconnection
from AP occurs:

• Connected - period during which RSSI value is above −85 dBm (less
than 75m away);

• Weak signal - period during which data transfers are possible but
RSSI is below −85 dBm (more than 75m away);

• No signal but available - period during which, although no connection
is possible to the AP (verified through irresponsive pings), the user
device still considers the connection as valid.

The several stages occur sequentially; in Fig. 2, we show the evo-
lution of the disconnection process from the perspective of the user
device as the vehicle moves away. The boxplots of time spent in each
stage, for all four runs, are in Fig. 3.

The results show that the user device takes some time before con-
cluding that the on-board AP is not in range anymore. This shows that,
if a stationary user device connects to a moving AP, there is a period
during which the device is mistakenly trying to communicate with the
AP. One important behaviour observed on the user device is that the
connection does not switch from cellular to WiFi until the device ac-
quires an IP address from the AP. From the user device perspective, this
means the cellular connection is not disrupted until the WLAN’s DHCP
process is complete.

3.2. Passenger user

In the second experiment, we took RSSI measurements inside buses.
Unlike the first set of experiments, these experiments were carried out
in a real-world setting. For a user riding the bus and sitting in a fixed
location, we expect little variation of the relative distance, connection
status and RSSI distribution over time (which were some of the relevant
aspects to explore in the “Road-side User” experiments). Furthermore,
there are additional aspects that can only be studied in a bus, such as

0

Fig. 1. RSSI profile as vehicle stops and user enters.

Fig. 2. Distance from the user when connection is lost.
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the impact of sitting in different locations of the bus.
Due to the on-going WiFi service operation, the AP could not be

used to record the RSSI of the user devices and, as such, the RSSI
samples were taken on the client side, with Android devices using a
customized application.

3.2.1. Methodology
The RSSI values were collected in a normal and an articulated bus,

at different locations inside the buses. We performed 10 measurement
sessions in each bus type, using the same Android device, and with a
different number of passengers. Each session lasted for 30 s while
sending pings to the AP. The RSSI was recorded every second.

3.2.2. Results
The results are shown in Fig. 4. We observe that the RSSI values

measured vary with the user position inside the bus (as would be ex-
pected) and, for each location, differ between the regular and articu-
lated bus (as distances are larger in the articulated bus). The RSSI va-
lues measured at a given location fit within reasonably well-defined
ranges: in both types of buses, 50% of the RSSI samples are within a 4 to
6 dBm range for most locations (the only exception is the front location
in articulated buses). We also recorded a slight difference between the
RSSI measured at the front location in the two types of buses. We hy-
pothesize that circumstantial factors are responsible for it, such as
differences in makes and models of the vehicles, location and antenna
orientation of the OBU setup in the vehicles, and of the user device
during measurements.

3.3. Discussion and conclusion

We have characterized undesired connections in terms of RSSI and

connection duration for the cases of: (i) User stands by the road-side
while a vehicle equipped with an on-board AP passes by; and (ii) user is
a passenger of the bus. In the first case, we observed inconsistency of
the RSSI value taken at the start of the connection, distance to vehicle at
connection establishment, and in the duration of the connection. In the
second experiment, we observed that the RSSI values measured inside
the bus, at different locations, meet well-defined values range de-
pending of the location.

The first experimental session (“Road-side User”) was carried in a
simplified scenario, i.e., without a significant number of the factors and
phenomena that occur in a real-world scenario such as the existence of
nearby WiFi networks, traffic lights and bus stops, jerky or un-
predictable movements of the vehicles, user mobility and device atti-
tude variations, among others. Despite the simplified scenario, we ob-
served considerable inconsistency in the connection behaviour (e.g.,
RSSI and distance of first contact), which led us to conclude that a
solution based on instantaneous or windowed analysis of RSSI alone
would not be effective. This caused us to change our approach and
pursue a strategy based on the analysis of large dataset from a real-
world scenario (that implicitly captures the range of variables occurring
in the real-world) and use machine learning to develop a classification
solution (described in the following section). Nevertheless, we still in-
cluded the RSSI of user devices measured at the AP in this dataset,
motivated by the promising results of the second set of experiments,
that was conducted in a real-world environment and thus already
captured part of those factors and phenomena.

4. Context classifier of relative position

We now describe a classifier trained to identify the relative location
of an on-board AP and a user device. The features used for online
classification should be extracted only from information available to the
on-board AP. Thus, for the purpose of training the classifier, we sourced
a large-scale dataset of bus GPS traces and RSSI samples of user devices
connected to the on-board APs. An initial set of features was con-
structed from this dataset based on the conclusions of the preliminary
experiments, and we used the RapidMiner tool [20] for feature selec-
tion and classifier training.

For the remainder of this section, we present the used dataset, the
set of initial features, the trained decision tree and an evaluation of its
performance, and a discussion on the resulting classifier.

4.1. Real-World connection dataset

We collected a large-scale dataset of connection and mobility traces
from an urban bus fleet. The mobility traces and connection history
between user devices and on-board APs was recorded during one week
on seven city buses. The buses did not stay on the same route from one
day to the next; routes were assigned randomly. The following in-
formation was stored per packet received at the on-board AP: time-
stamp, MAC address, average RSSI value, GPS position, and GPS speed.
Two packets with the same MAC address were part of the same con-
nection if they had no more than 2 s of difference between timestamps.
In case there was a larger difference, packets were assigned to separate
connections. In total, around 5 million lines of data were gathered,
corresponding to 14,063 connections. Data pre-processing consisted on
discarding connections that: (i) Had less than 10 samples; (ii) had failed
GPS measurements during the connection. The resulting dataset con-
tained 12,040 connections.

The dataset did not have any ground truth annotation for our
classification task – whether the connecting user device is outside or
inside the bus. We performed artificial annotation of the dataset using
two connection characteristics, the connection duration and the dis-
tance traveled by the bus during the connection, working under the
assumption that connections that last long and during which the bus
traveled a large distance cannot be caused by devices connected outside

Fig. 3. Duration of connection stages.

Fig. 4. RSSI measured inside the bus.
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the bus. We searched for discriminating criteria by binning connections
into two classes with regards to a threshold of the distance traveled by
the bus during the connection, and examining the distribution of the
connection duration per class. We considered four arbitrary thresholds
for the distance traveled by the bus – 250, 500, 750 and 1000m. For
each category, we removed outliers with respect to connection duration
using the Hampel filter, a window-based method that substitutes sam-
ples more than three standard deviations away from the window
median by that median. The results for each threshold are presented in
Fig. 5. The 250 m threshold produces the best separation between the
two artificially-annotated groups of connections: there is a clear dis-
tinction between brief and short connections (outside the bus) and long-
lasting connections (inside the bus). Thus, we annotated the dataset
according to the following criteria:

• Outside: connections during which the bus traveled less than 250m,
and connection lasted between 20 s and approximately 2 min;

• Inside: connections during which the bus traveled more than 250m,
and connection lasted between approximately 4 and 7 min.

We obtained up to 2,350 connections outside the bus and 7,400
connections inside the bus.

During the data analysis, the connections outside the bus were
mapped geographically. The result is displayed in Fig. 6, and it can be
observed that certain geographical areas of the city have a larger
density of connection events.

4.2. Feature selection

An initial set of features were produced from the dataset for input to
the classifier training procedure. The features could be divided into two
classes – RSSI-based and speed-based. We selected the RSSI and speed
at connection time, and the average and variance of speed and RSSI for
N seconds after the start of the connection. Choosing a value for N
implies a practical trade-off when the classifier is implemented in the
on-board AP: the longer the time interval to decide whether the user is
inside or outside the bus, the longer the user must wait before being
given Internet access. The bus speed prior to the connection start was
also included as it may indicate whether the bus had just been at a stop.
This speed prior to the connection start was computed as an average of
the Nprev seconds prior to the connection. Since we only collected the
speed during the connection, this feature was extracted from other on-
going connections on the same bus in the relevant time window.

Overall, the features we generated were the following:

• RSSI at connection time;

• Mean / median / std. dev. of the RSSI for the first N seconds of
connection;

• Mean / median / std. dev. of RSSI variation for the first N seconds of
connection;

• Mean / median / std. dev. of the Exponential Moving Average
(EMA) of the RSSI;

• Vehicle speed at connection time;

• Mean / std. dev. of the vehicle speed for the first N seconds of

Fig. 5. Data segmentation, inside vs outside the bus, for distances with outliers removed using the Hample identifier.

Fig. 6. Geographical distribution of the connections outside the bus.
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connection;

• Mean / std. dev. of the vehicle speed for the Nprev seconds prior to
connection;

• Slope / intercept value of the linear regression of RSSI;

The time windows N (in seconds) used to construct features were 5,
10, 15 and 20 s. The speed prior to the connection feature was calcu-
lated using an arbitrary time interval Nprev of 10 s.

4.3. Classifier training and performance evaluation

We opted for a decision tree classifier due to the simplicity of the
task and the need to later implement the solution in software on an
embedded device. The final dataset of 7400 connections inside the bus
was sub-sampled to obtain 2,350 connections, thus matching the
number of outside connections. The connections were split into 70% for
training the decision tree and 30% for testing. RapidMiner was run
separately for N = {5s, 10s, 15s, 20s}.

The decision tree output by RapidMiner is shown in Fig. 7, with the
produced parameters values for the different N being shown in Table 1.
Respective rates of true positive (sensitivity), true negatives (specifi-
city) and ratio of overall correct classifications (accuracy) are shown in
Table 2. Three main conclusions can be drawn:

1) RSSI was discarded: RSSI metrics were completely discarded by
the feature selection process and only speed features were left. We
discuss this in more detail in Section 4.4.

2) Larger time windows improve classifier accuracy: This is explainable
by observing that, if a high bus speed is recorded over an increasingly
larger connection duration, the more probable it is that the user is in-
side the bus. The contrary may not be true: if the connection is lasting
substantial time but the bus is stopped or at low speeds, the user can be
either inside or outside the bus, e.g., by the bus stop or a traffic light.
One exception to this is when the user is outside the bus but at a similar
speed (e.g., in a nearby car). However, these connections should be
considered inside the bus according to our ground truth inference, and
rightly so because no quality of experience impairment should be ex-
pected.

3) Prior speed is a relevant feature: Speed prior to connection was
selected as a feature when the bus speed is low. We can conclude that
knowing if the bus has just stopped influences the decision about
whether the user device is inside or outside the bus. This feature pro-
vided considerable performance improvement. In Table 3, we show the
results with and without this feature to emphasize the performance
increase it brings.

Finally, we explore the trade-off between true positives and true

negatives and the time to connect. We implemented separate decisions
trees for the various instants in a sequential fashion and ran the clas-
sification function in RapidMiner. The results for the percentage of the
users that are allowed to connect or not is shown on the Fig. 8. We see
that the percentage of the users that are inside the bus and can connect
(true positive rate) can be increased by 10% at the cost of some con-
nection delay (10 s) and a 4% increase in false positives.

4.4. Why RSSI is not a good feature

We looked in detail at the RSSI samples of the dataset to understand
the reason of not being selected as feature during the classifier training.
We searched for differences in RSSI behaviour among connections
outside and inside the bus, and for that we computed the mean, median
and standard deviation during the first 20 s of connection. The RSSI
mean and median can be visualized in Fig. 9. It is possible to see that
there is little difference between the RSSI inside and outside the bus.
Fig. 10 shows the mean and median of the variation of the RSSI, and
again no difference can be seen for the data when a user is inside or
outside the bus.

This analysis further stresses the difficulty of using a RSSI-based
metric to discriminate users inside and outside the bus, as observed in
the initial characterization experiments (Section 3). In using a real-
world large-scale dataset, we were made aware of another factor that

Fig. 7. Produced decision tree (see Table 1 for parameter values).

Table 1
Decision tree parameters, applied in the decision tree of Fig. 7, with respect to elapsed
time since connection start. Values in km/h.

Elapsed time 0 s 10 s 15 s 20 s

Parameter a 3.5 3.85 2.3 2.15
Parameter b 7.5 13.5 20.5 –

Table 2
Sensitivity, specificity and accuracy of the decision trees for different time intervals

Elapsed time

0 s 10 s 15 s 20 s

Sensitivity (inside the bus) 73.59% 80.77% 83.85% 87.44%
Specificity (outside the bus) 63.85% 61.03% 56.92% 55.90%
Accuracy 68.72% 70.90% 70.38% 71.67

Table 3
Sensitivity, specificity and accuracy of the decision tree with and without previous speed
information (at first contact instant and after 20 seconds)

Elapsed time

0 s 20 s

Prev. speed information Not used Used Not used Used

Sensitivity (inside the bus) 65.38% 73.59% 81.22% 87.44%
Specificity (outside the bus) 67.93% 63.85% 61.31% 55.90%
Accuracy 66.79% 68.72% 71.41% 71.67%

Fig. 8. True and false positives for different time intervals.
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may contribute for RSSI similarity. The range of user devices detected
encompasses a variety of wireless transceiver hardware that, in turn,
produce different RSSI levels in similar conditions, as shown in [21].
We were able to distinguish device makes and models of the dataset via
the first half of the MAC address, that is assigned to the chipset man-
ufacturer by the IEEE Standards Registration Authority (informally re-
ferred to as “assignment”). In this manner, we could plot the RSSI
median by manufacturer, as seen in Fig. 11. Only the connections that
traveled for over 1 km of distance were included in the plot, and only if
there were more than 40 connections for the same assignment. The
result supports our hypothesis that RSSI levels varies among chips of
different manufacturers, contributing to the frailty of RSSI as a feature
in this classification task.

5. System design and integration in network stack

We now describe a system design that incorporates the classifier
into the on-board access points – the Gatekeeper mechanism. The
Gatekeeper mechanism evaluates if a user device is inside or outside the
bus before allowing connection, using the classifier described in the
previous section.

In this section, we present a preliminary study meant to identify the
best occasion in the connection setup procedure to deny association, the
main considerations driving the design of Gatekeeper, and a description
of the operation and implementation of the mechanism. An experi-
mental real-world evaluation of Gatekeeper performance follows in the
next section.

5.1. Preliminary study: Impact of connection denial

We sought to identify the best occasion, during the connection setup
process, to refuse a connection. This will inform us about which net-
work stack component should Gatekeeper be integrated in. Our criteria
to identify the best stage is that that: (i) Causes the least disruption in
the user device being denied; (ii) causes the most homogeneous re-
sponse across different devices. For that purpose, we studied the be-
haviour of multiple user devices when denied a connection to an AP.
The stages required for a user device to connect to a WiFi access point
are four: Discovery, Authentication, Association and IP assignment.
During Discovery stage, the user device searches for an AP actively or
passively. Once an AP is found, the user device initiates two message
exchanges leading to Authentication and Association with the AP.
Regarding DHCP operation, the IP assignment process can take several
seconds due to two reasons [22]: (i) If the devices find WiFi networks
with a SSID previously seen, the devices will try to renew the IP address
lease; and (ii) the DHCP server performs a Duplicate Address Detection
(DAD) to ensure the offered address is not in use. As mentioned in
Section 3.1.2, the previous cellular connection is only broken when the
user device has successfully acquired an IP address on the WiFi con-
nection. Thus, the connection can be denied at the DHCP IP assignment
stage or the stages that precede it, except Discovery (no denial primitive
is available). In any stage, the AP can deny access either explicitly by
sending a message, or implicitly by not replying.

On the user device side, the behaviour of a user device in either case
for the three stages is not standardized. We designed a test to under-
stand how various user devices behave when denied connection to an
AP. The test was conducted on 3 smart phones with different Android
versions: Lenovo Vibe Shot (Android 6.0.1), LG Nexus 4 (Android 4.4.4)
and Samsung S3 (Android 4.3). The test was conducted with a modified
version of hostapd that either did not reply to requests or denied them,
to emulate the available options. For one minute starting from the first
authentication packet received, the timing of the packets was recorded
to extract the inter-packet interval.

The results can be seen in the Figs. 12–16. We observed that mobile
devices can behave very differently among manufacturers. For example,
when denied an Association request (shown in Fig. 13), the Samsung S3
sends a packet every 4 s, and the LG Nexus sends 3 packets with a 30 s
interval between the second and third packets.

From this study, we conclude that the DHCP stage is the preferential
stage to deny the connection, as the behaviour exhibited by the dif-
ferent mobile devices is most similar. As seen in Fig. 16, ignoring DHCP
packets causes fast retransmission in all devices (although inter-packet
periods may grow to 16 s), and the inter-packet interval increases until
a certain threshold is reached and then restarts from a lower value. As a
final remark, we observe in all cases that the inter-packet interval is
larger when denying a connection.

5.2. Gatekeeper design

The design of Gatekeeper followed three main requirements:

Fig. 9. RSSI mean and median for inside (in) and outside (out) connections.

Fig. 10. Mean and median of the variation of RSSI.

Fig. 11. Measured RSSI values per manufacturer.
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• Disrupt the denied user experience the least possible;

• Minimize the access time to inside users;

• Handle false negatives.

The first design requirement is meet by leveraging the previous
conclusion that denying a connection is best at the DHCP stage. Thus,
the Gatekeeper mechanism is implemented in the Linux kernel DHCP
server code dnsmasq. This allows us to access directly the DCHP probes
from user devices that arrive from the network.

The requirement that Gatekeeper must keep the delay experienced
by users inside the bus to a minimum needs to be traded off with the
fact that a longer period of data collection results in better accuracy of
the classifier (as concluded in Section 4). Our approach is to issue

additional classifications at known intervals since the instant of the first
connection attempt, in addition to the initial classification (at the in-
stant of the first attempt) and while the user has not been granted ac-
cess. As time elapses, the classifier parameter values and input feature
information are updated to improve performance. For a given elapsed
time interval, the used parameter values and input features are those
obtained in classifier training for the associated time interval, shown in
Fig. 7. Notably, the input feature information is updated as follows: in
the first attempt, the instantaneous value of bus speed is used; in sub-
sequent attempts, the speed average since the first attempt is used.

Finally, false negatives are situations in which a user device is inside
the bus but recurrently classified as being outside. False negatives are
handled with a bypass mechanism: after a timeout N ,wl these devices
are allowed to associate to the AP.

There are two data structures to support the operation of the clas-
sifier and implement the end application goal:

• Monitored list: Tracks devices that tried to connect previously and
were not granted connection, by keeping MAC addresses, time of the
first connection attempt and the bus speed 10 seconds before the
first time seen;

• White list: Tracks devices classified as outside and flags them after the
bypass timeout Nwl expires to allow their connection, in case they
continue to try to access the AP.

5.3. Operation and implementation

We detail the overall operation and order of actuation of the me-
chanisms discussed above. Fig. 17 presents the overall workflow of the
algorithm. Upon arrival of a DHCP probe from the network, the algo-
rithm executes the following steps:

Fig. 12. Packets resent when there is no reply to the Authentication Request.

Fig. 13. Packets resent when the Authentication Request is denied.

Fig. 14. Packets resent when there is no reply to the Association Request.

Fig. 15. Packets resent when the Association Request is denied.

Fig. 16. Packets resent when the DHCP packets are ignored.
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1) Apply bypass mechanism: Check if the user device has been trying
to connect for a longer time than Nwl.

• If so, it is moved to the White list and granted connection.

• If not, the algorithm follows to the next step.

2) Apply classifiers: Check if user device has tried to connect pre-
viously, by searching its address in Monitored list, and apply the ap-
propriate classifier mechanism:

• If it is the device’s first attempt, the classifier decides using the in-
stantaneous bus speed as feature, and the parameter values for the
start of the connection (from Fig. 7).

• If it is not the first attempt, depending on whether user device is
trying to connect at intervals (7.5,12,5], (12.5,17.5] or
(17.5,22.5] s, the classifier uses the parameters corresponding to the
10, 15 or 20 s intervals (refer to Fig. 7 for values) and the speed
averages for those periods as input feature.

The application rules and classifier parameter used in each of the
previous cases are summarized in Table 4.

The Gatekeeper mechanism implementation was broken into two
software modules: the core algorithm and the Bus Monitor process. The
core algorithm includes the collection of classifiers and the bypass
mechanism, and was incorporated in the dnsmasq process code. The Bus
Monitor process runs in parallel with the core algorithm. It was created
to off-load non-essential functionalities, thus keeping code changes in
the DHCP server to a minimum. Bus Monitor stores the speed of the last
20 s, allowing dnsmasq to compute the mean of the bus speed and feed it
to the classifier.

6. Experimental evaluation of gatekeeper solution

We conducted experiments to evaluate the performance of
Gatekeeper in an urban scenario, using a private vehicle. We did not
have the possibility of deploying Gatekeeper in a bus AP, and therefore
we could only evaluate the performance of the classification regarding
users that did not enter the vehicle. Nevertheless, this is the most re-
levant use-case as it is the one prone to undesired connections.

6.1. Methodology and collected dataset

We installed an on-board access point in a private vehicle that ad-
vertised the same SSID as the public bus WiFi service. We performed a
circuit through the city passing by some of the locations where the most
connections from outside users occurred, as seen in Fig. 6. The fol-
lowing data was collected:

• Timestamp of first and subsequent DHCP packets from users, and
associated classifier decisions;

• RSSI of connected devices and GPS coordinates at a rate of 1 s.

The ground truth of the relative position of users is known, as all
users were outside the vehicle and would be not be entering. We set the
timeout Nwl for the bypass mechanism at 25 s, as the classifier was only
trained to handle DHCP stage durations of up to 20 s.

We carried out two measurement sessions of two and half hours, in
separate weekdays and at rush hour (5:00pm–7:30pm) to maximize
connection attempts. The users were anonymous pedestrians that
happened to be on the street during the experiment and had no re-
lationship whatsoever with the experiment team. The RSSI measure-
ments were obtained at the on-board access point. In order to replicate
a bus driving patterns, speed and acceleration were kept moderate.
Furthermore, on occasion we would stop at bus stops and wait for an
interval similar to that that a bus takes to off-load and up-load pas-
sengers. We removed connections in which the DHCP stage lasted more
than 180 seconds and separated independent connections from the
same MAC address if RSSI samples were apart by more than 300 sec-
onds. In total, 180 connection attempts from different users were re-
corded.

6.2. Results

We now present operation and performance analyses of Gatekeeper
drawn from real-world measurements. We address the accuracy of the
classifier and access mechanism, the quality of the usability (e.g., access
latency), and vehicle speed at first contact for comparison against the
final Gatekeeper decision. As a final analysis, we evaluate if our criteria
for artificial labeling of the ground truth dataset was valid or not.

6.2.1. Performance of classifier and gatekeeper
We differentiate the success rate of the classifier and the acceptance

rate of the Gatekeeper for purposes of performance evaluation. Note
that the decision of Gatekeeper follows the classifier output up to the
bypass timeout, after which the classifier is overridden and access may
be granted to a user even though the classifier indicates an outside
classification.

Table 5 summarizes the two rates as time progresses (from left to
right in the table). Upon the first DHCP packet reception, the classifier
evaluated 71 out of 180 users as being outside, resulting in a success
ratio of 40%. The remaining users were considered inside and granted
immediate access by Gatekeeper. As time progresses to the bypass

Fig. 17. Flowchart of Gatekeeper operation.

Table 4
Elapsed time-differentiation of parameters and inputs.

Time elapsed t Threshold values Input feature

Speed Prior
Speed

Speed Prior Speed

0 3.5 7.5 Instantaneous speed Speed avg. for
[N ,prior 0]

(7.5, 12.5]s 3.85 13.5 Speed avg. for [0,t] idem
(12.5, 17.5]s 2.3 20.5 idem idem
(17.5, 22.5]s 2.15 – idem idem
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timeout (of 25 s), Gatekeeper issues new classifications for the some of
the outside users based on changes in the classifier parameters and
collected features. As visible in the table, the classifier eventually re-
verted its decision on 5 users initially classified as outside to being in-
side, and thus were granted access by Gatekeeper.

After the timeout, the bypass mechanism accepts users with an
outside classification that are still sending packets. The number of such
users was 17. The remaining 49 users classified as outside were never
classified as inside nor sent a new packet after the timeout period.

6.2.2. Usability analysis
We evaluate the usability of our Gatekeeper solution by two metrics:

(i) Decision latency: The interval since the first DHCP packet is received
and the instant a decision is made at Gatekeeper; and (ii) Access latency:
The interval since the first DHCP packet is received and the instant at
which the user device is assigned an IP and Internet access is finally
possible.

The decision latency is dependent on two factors: (i) Given that
classifier parameters are updated as time passes by (see Table 4), the
features may come to match the classifier criteria for an inside classi-
fication; and (ii) as discussed in Section 4.4, devices of different makes
and models feature different behaviors regarding DHCP packet trans-
mission timings. The CDF of the decision latency is shown in Fig. 18, for
users classified initially as outside. If the interval is zero, the decision
remains the same; otherwise, a revision of the decision occurred (in all
cases from denied to accepted). We observe that the decision remains the
same for 69% for users attempts classified as outside upon reception of
the first DHCP packet. A number of users are granted access upon re-
ception of subsequent DHCP packets within the interval up to the
timeout of 25 s. For the remaining 23% of the users, the first decision
based on the classifier output is overridden by the bypass mechanism
after the 25 s timeout (depicted with the dash-dot line).

The access latency encompasses the decision latency and the addi-
tional interval that it may take for the user device to receive an IP
address. Due to the difference in DHCP request timing policies among
devices of various makes and models, there is some variability about
the instant at which the user device is assigned an IP even though the
classifier has already issued internally an accept decision for that device.
The CDF of the access latency is shown in Fig. 19. We note that, for
example, among the 17% of users that connected after the bypass
timeout (which are automatically accepted), there is considerable dif-
ference among the instants at which the DHCP exchange ends. This
result shows how various users may register a different experience with
Gatekeeper due to a blend of factors stemming from the user device and
the Gatekeeper operation. This plot also confirms that the users that did
not connect after the bypass timeout ended their interactions with the
AP before the timeout, as expected.

6.2.3. Speed at first contact
We plot the speed at which the bus traveled at the instant of the first

reception of a DHCP packet. The threshold speed for a decision at this
instant is 3.5 km/h. Fig. 20 presents the CDF of these speeds for the
users that were classified as inside or outside at the first contact. Two
observations can be extracted: (i) for the outside users, 96% had less
than 3.5 km/h as expected; (ii) for the inside users, 24% of the speeds at
the first packet reception were below the threshold; the remaining
connections show a wide range of speeds. Note that, for the latter case
and regarding speeds below the threshold, the deciding criteria might
have been the average speed of the 10 seconds prior to the first DHCP
packet.

6.2.4. Validation of ground truth criteria
Finally, we evaluate the accuracy of our criteria to perform the

ground truth annotation for the large-scale dataset used to train the

Table 5
Classifier and Gatekeeper performance (read from left to right for time progression; total number of connections = 180).

Decision criteria Before timeout: Classifier output After timeout: Bypass output

Classification First classif. Up to timeout Action After timeout

Outcome of classifier/ mechanism (nr users per class) Inside 109 +5 –
Outside 71 −5 New DHCP packet 17

No more packets 49

GateKeeper decision Accepted 109 114 Accepted 131
Denied 71 66 No follow-up 49

Classifier performance Ratio correct 40% 37% –

Fig. 18. Decision inversion latency for users initially classified as outside.

Fig. 19. DHCP stage duration and service latency for users.
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classifier. As discussed in Section 4.1, the criteria to artificially separate
user devices into outside and inside was based on a threshold-based
classification of distance traveled by the vehicle and connection dura-
tion, with thresholds of 250m and 4 min (240 s) respectively. Given
that in the current experiments the ground truth was available (all user
devices were outside), we could evaluate if these criteria are observed.
The CDF of distance traveled by the vehicle while the user device is
associated to the AP is shown in Fig. 21. We observe that in only around
25% of the connections match our threshold for relative position
identification of outside users. In Fig. 22 the CDF of the connection
duration is shown, and we observe that only 23% of connections meet
the criteria for being classified as outside.

6.3. Discussion

We observe that, in this experiment, the developed classifier had a
success rate of 40% in identifying outside users at the first instant.
Using a test dataset, a value of 63% for instantaneous decisions had
been achieved, as shown in Fig. 8. The higher rate of inside identifica-
tions is related to the wide range of speeds the on-board AP experiences
at the time of the first contact between AP and user device. The trained
classifier assigns the classification of outside if the bus is traveling
slower than 3.5 km/h. We observed in Fig. 20 that the vehicle speed
upon reception of the first DHCP packet is, in 62% of the cases, superior
to this threshold.

To explain this discrepancy, we hypothesize that our experiments
may have not captured the full range of conditions and situations that

buses experience everyday throughout the whole city. Additionally, the
procedure used to annotate the initial dataset may be inaccurate with
respect to the conditions of these experiments, which had a much more
limited scope than the full dataset. The later aspect is corroborated by
the observations of the previous section that only 25% of the connec-
tions feature a travel distance classifiable as outside, and likewise for
23% of the connections regarding duration. Notwithstanding, it is in-
feasible to obtain a perfect ground truth for this problem.

As main conclusion, Gatekeeper is shown to be able to reduce the
amount of inconsequential connections, and thus the respective load on
the mobile hotspot and disruption to outside users, by 40%.

7. Conclusions and future work

In this work we evaluate the feasibility of an on-board access point
detecting the relative position of a user device, to support the decision
on whether to allow the device to associate or not. This mechanism is
designed to protect and smooth the outdoor Internet experience of bus
WiFi network users when not riding the bus., This is achieved in two
key ways: (i) As their cellular Internet experience is undisturbed by
passing buses; and (ii) the need to manage interface operation at their
mobile device is obviated. Initial field experiments showed that a so-
lution based purely on RSSI might be impractical. Thus, we sourced a
large-scale dataset of mobility and AP connection traces from a bus fleet
equipped with WiFi service to train a decision tree classifier. Input
features were based on the bus speed and RSSI values at different in-
tervals with respect to the connection instant. After training, we ob-
served that RSSI was deemed irrelevant whereas bus speed was an
important feature. Finally, we proposed Gatekeeper, a mechanism
based on the developed classifier to be incorporated in the network
stack of embedded devices, such as the on-board AP. Gatekeeper adds
features to provide a seamless experience to users that enter the vehicle:
if not granted access immediately, Gatekeeper periodically revises the
user device classification after the first contact, and grants uncondi-
tional access after a timeout of 20 s, a period similar in scale to the IP
assignment stage. Field experiments in a private vehicle showed that
the Gatekeeper classifier identified around 40% of the users that were
outside at the first instant. In practical terms, this translates into 40% of
outside users being denied association to the on-board AP; if these users
had an on-going cellular connection, their Internet experience was not
disrupted.

For further improvement, additional data could be collected with
the actual user location, either via user input or integration with the
ticket system, in order to create a dataset with a true ground truth.
Regarding implementation, the Gatekeeper mechanism could be de-
ployed in a few on-board APs of the bus fleet for a test run. Other

Fig. 20. Instantaneous speed at first contact instant per class.

Fig. 21. Distance traveled during connections.

Fig. 22. Duration of connections.
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potential improvements may come from analyzing the time a user who
is about to enter the bus takes before connecting to the hotspot – in
waiting in the queue to enter the bus, validating the ticket and finding a
seat –, in order to enhance the overall user experience with Gatekeeper.
Finally, some geographical criterion based on Fig. 6 or on the location
of bus stops and traffic lights could be used to further improve the
mechanism performance.
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